MEASURES OF N-FOLD SYMMETRY
FOR CONVEX SETS

CHARLES K. CHUI AND MILTON N. PARNES

Abstract. If a convex set S is 3-fold symmetric about a point $0 \in S$, then any 3-star contained in S with vertex 0 is no smaller than any other parallel 3-star contained in S. In this paper, among other results, we establish the converse. Consequently, we find two measures of n-fold symmetry, one for $n = 2, 3$, and the other for each $n \geq 2$.

1. Introduction. A set S in the complex plane \mathbb{C} is said to be n-fold symmetric about a point P if every rotation about P of $2\pi/n$ maps S onto itself. Let \mathcal{F} be the family of all compact convex sets in \mathbb{C} with nonempty interior, that is, different from a line segment. Following Grünbaum [2], we call a real-valued function F a similarity invariant measure of n-fold symmetry for \mathcal{F}, if

(i) $0 \leq F(K) \leq 1$, $K \in \mathcal{F}$;
(ii) $F(K) = 1$ if and only if $K \in \mathcal{F}$ has a center of n-fold symmetry;
(iii) $F(K) = F(T(K))$ for every $K \in \mathcal{F}$ and every nonsingular similarity transformation T of \mathbb{C} onto itself;
(iv) F is continuous on \mathcal{F}.

There is a large literature on such measures in case $n = 2$ (cf. [2]). In this paper we are going to introduce two definitions of measures for other natural numbers n. [See §3.] Our first definition, which holds for $n = 2, 3$, comes from Theorem A. This theorem also gives a partial answer to a conjecture in the second author’s dissertation [4]. Our second definition, which holds for all $n \geq 2$, is based on Theorem B, a generalization of Hammer’s result [3].

We shall use the same terminology as introduced in [5]. Let S be a convex set in \mathbb{C}, $0 \in S$ and let T be an arbitrary n-star at 0 contained in S. That is, T is any n-star with vertex 0 and rays terminating on the boundary of S. Then S is said to have the n-maximal property at 0 if every n-star U, contained in S and parallel to T, is no larger than T: $|U| \leq |T|$. The second author [4], [5] proved that every bounded convex set S, n-fold symmetric about $0 \in S$, has the n-
maximal property at 0 for every natural number $n \geq 2$. He also conjectures that if a convex set S has the p-maximal property at a point $0 \in S$, where p is a prime, then S should be p-fold symmetric about 0. It is easy to see that the condition p being a prime cannot be omitted. For if S has the n-maximal property at 0, it also has the mn-maximal property at 0 for every natural number m. In particular, every rectangle has the 4-maximal property at its center 0, although it is only 2-fold symmetric about 0. The above conjecture is contained in the following:

Conjecture. Let S be a bounded convex set in C with the n-maximal property at $0 \in S$, and let $n = p_1 \cdots p_k$, where p_1, \cdots, p_k are primes. Then S is p_j-fold symmetric about 0 for some $j = 1, \cdots, k$.

The following theorem gives a partial answer to this conjecture.

Theorem A. Let G be a bounded convex set in F with the n-maximal property at $0 \in G$. Then if $n = 2, 3$, G is n-fold symmetric about 0, and if $n = 4$, G is 2-fold symmetric about 0.

The result for $n = 2$ is not new, and easily follows from a result of Hammer [3].

Let S be a bounded convex set in C containing the origin 0 and let $\rho(\theta) = \rho(\theta + 2\pi)$, $-\infty < \theta < \infty$, be the polar representation of the boundary of S. We say that S has the n-supporting-line property with respect to 0, if for every θ, there are n lines of support of S at the angles of $\theta, \theta + 2\pi/n, \cdots, \theta + 2(n - 1)/n$, such that the angle between any two adjacent lines is $(n - 2)\pi/n$. It is clear that if S is n-fold symmetric about 0, it has the n-supporting-line property with respect to 0. We will prove the converse, namely

Theorem B. Let $n \geq 2$ be an arbitrary natural number and let G be a bounded convex set in F having the n-supporting-line property with respect to an interior point 0 of G. Then G is n-fold symmetric about 0.

2. **Proofs of Theorems A and B.** We first prove Theorem B. Let C be the boundary curve of G with polar representation $\rho = \rho(\theta)$, and let $\psi = \psi(\theta)$ denote the angle at (θ, ρ) measured from the radial line to the line of support in the counterclockwise direction. Since G is convex, C has continuous turning tangents at all but a countable number of points, and by elementary calculus, we know that at these points

$$\cot \psi(\theta) = \rho'(\theta)/\rho(\theta).$$
The n-supporting-line property implies

$$\psi(\theta) = \psi(\theta + 2\pi/n)$$

for all θ. Hence, integrating ρ'/ρ and taking exponentials, we see that there exists a positive constant c such that

$$\rho(\theta) = c_0(\theta + 2\pi/n) = \cdots = c^{n-1}(\theta + 2(n-1)\pi/n) = c^n\rho(\theta).$$

Hence, $c = 1$ and G is n-fold symmetric about 0.

We shall prove Theorem A for $n = 3$. The proofs for $n = 2, 4$ are similar and easier. We first list the following five geometric observations, the proofs of which are quite elementary.

1. Let A be an equilateral triangle with center 0 and interior G. Let T be a 3-star contained in G with vertex 0, and let U be any 3-star contained in G and parallel to T. Then $|U| \leq |T|$ and equality holds if and only if either the rays of U fall on different sides of A or $U = T$.

2. Let T be a 3-star of finite length, and let r_1, r_2, r_3 be its rays. Let U be another 3-star parallel to T with rays r_1, r_2, r_3 such that the vertex of U lies on r_3; r_1, r_2, r_3, r_3 terminate on a common straight line; and r_3, r_3 terminate at the same point. Then $|T| \leq |U|$, and equality holds if and only if $T = U$.

3. Let T be a 3-star with rays r_1, r_2, r_3 and let r_1, r_2 terminate on straight lines L_1, L_2 respectively, where either L_1 and L_2 are parallel or they intersect on the same side of the line passing through the tips of r_1, r_2 as r_3. Then it is possible to construct a 3-star U with rays r_1, r_2, r_3 parallel to r_1, r_2, r_3 respectively, such that r_j terminates on L_j, $j = 1, 2$; r_3 and r_3 terminate at the same point; $r_3 \subset r_3$; and $|T| < |U|$.

4. Let T be a 3-star contained in a triangle Δ such that the vertex of T lies in the interior of Δ and each ray of T terminates at an interior point of a different side of Δ. Construct the three equilateral triangles $\Delta_1, \Delta_2, \Delta_3$ such that one side of each Δ_j lies on an extended side of Δ and the other two sides of Δ_j pass through the other two tips of the rays of T. Then at least one of $\Delta_1, \Delta_2, \Delta_3$ contains T in its interior.

5. Let Δ be a triangle which is not equilateral, and let T be a 3-star contained in Δ such that the vertex of T lies in the interior of Δ and each ray of T terminates at an interior point of a different side of Δ. Then there is a 3-star U contained in Δ and parallel to T such that the vertex of U is arbitrarily close to that of T and $|U| > |T|$.

The proofs of (1) through (4) are quite straightforward, while the proof of (5) follows from (1) through (4). As a corollary of these observations, we obtain
Theorem 2.1. Let \(G \) be the interior of a convex polygon \(P \), \(T \) a 3-star with vertex in \(G \) and contained in \(G \) such that \(|T| \geq |U| \) where \(U \) is any 3-star contained in \(G \) and parallel to \(T \). Then either at least one ray of \(T \) terminates at a vertex of \(P \) or the three rays of \(T \) terminate on the interior of three different sides of \(P \), which, when extended, form an equilateral triangle that contains \(T \) in its interior.

Proof. Suppose that the three rays of \(T \) terminate on the interior of the sides of \(P \). By (2) these rays terminate on different sides, and by (3) these three sides, when extended, form a triangle which contains \(G \) in its interior. By (5) this triangle is indeed equilateral.

We remark that for the special case of convex polygons Theorem A is already proved. Indeed, from the above proof we see that 3-maximal property implies 3-supporting-line property which in turn, by Theorem B, implies 3-fold symmetry. To include a larger collection of convex sets, we need the following

Lemma 2.1. Let \(G \) be a convex domain with boundary \(C \). Let \(T \) be a 3-star with vertex \(0 \in G \) and rays terminating on \(C \) at points where \(C \) has continuous turning tangents, such that \(T \) is no smaller than any parallel 3-star contained in \(G \). Then the lines of support \(L_1, L_2, L_3 \) of \(G \) at the tips \(a_1, a_2, a_3 \), respectively, of \(T \) form an equilateral triangle.

Proof. The lines of support form one of the configurations as described in our above five observations. For instance, assume that they form a triangle, which is not equilateral, such that \(T \) terminates on the interior of its three different sides as in observation (4). Let \(L_1 = L'_1 \) be the line of support on which an equilateral triangle as described in the conclusion of (4) can be constructed. Let \(L'_2 \) and \(L'_3 \) be drawn through \(a_2 \) and \(a_3 \) respectively to form this equilateral triangle. One can find a 3-star \(T^* \) contained in \(G \), parallel to \(T \) and with vertex \(0^* \in G \) arbitrarily close to \(0 \) so that the rays of \(T^* \) intersect \(L'_2 \) and \(L'_3 \) in \(G \) or on \(C \). [Cf. Fig. a or Fig. b.] Using the fact that a tangent line to a curve is a much closer approximation to the curve than any secant line, one can easily see that if \(0^* \) is suitably chosen \(|T^*| > |T| \). This is a contradiction. The proofs for the other configurations are similar.

We can now complete the proof of Theorem A \((n = 3) \). Let \(C \) be the boundary curve of \(G \). Then \(C \) has continuous turning tangents at all but a countable number of points. Hence, by using the right-hand derivatives and Lemma 2.1, \(G \) has the 3-supporting-line property with respect to \(0 \), and is, therefore, 3-fold symmetric about \(0 \) by Theorem B.
3. Measures of symmetry. Let $G \in \mathfrak{S}$, P a point in G and let P_θ, $0 \leq \theta < 2\pi/n$, denote the n-star contained in G, with vertex P, and having a ray with an angle of inclination θ measured positively from the real axis. Let

$$M_n(G; P) = \inf_{Q, \theta} \frac{|P_\theta|}{|Q_\theta|},$$

where Q runs over G and $0 \leq \theta < 2\pi/n$. We define the function M_n on \mathfrak{S} by

$$M_n(G) = \sup_{P \in G} M_n(G; P), \quad G \in \mathfrak{S}.$$

Theorem 3.1. For $n = 2, 3$, M_n is a similarity invariant measure of n-fold symmetry for \mathfrak{S}.

Proof. It is clear that M_n satisfies (i) in §1. Since each $G \in \mathfrak{S}$ has nonempty interior, the useful n-stars Q_θ in the definition of $M_n(G; P)$ have lengths bounded away from zero; hence, M_n is continuous. Finally, for $n = 2, 3$, we see that, using Theorem A, $M_2(G) = 1, G \in \mathfrak{S}$, if and only if G is n-fold symmetric.

Note that in defining M_n, we have required that the sets G to have nonempty interior, that is, to be different from a line segment. In the latter case, it is not clear how to interpret $|P_\theta|/|Q_\theta|$, when both $|P_\theta|$ and $|Q_\theta|$ are zero for all, except one, values of θ, $0 \leq \theta < 2\pi/n$. Indeed, in this case, continuity for M_3 breaks down: If we approximate a line segment L by rectangles, the limit would be $\frac{1}{2}$; however, if we approximate L by isosceles triangles, it would be $2/5$.

We now define our second measure based on Theorem B. Let
$G \in \mathcal{F}$, P a point in G and P_θ as defined above, $0 \leq \theta < 2\pi/n$. Let Δ be a regular n-gon such that G is contained in the closure of its interior and such that if Δ' is another regular n-gon which lies in the interior of Δ, then G does not lie in the closure of the interior of Δ'. Such a Δ will be called admissible. Let Q be the center of Δ. (If $n=2$, Δ is a pair of parallel lines and Q is equidistant from these two lines.) Let Q_θ be the n-star contained in the interior of Δ with vertex Q and parallel to P_θ. We define

$$N_n(G; P) = \inf_{\Delta} \sup_{\theta} \frac{|P_\theta|}{|Q_\theta|},$$

where $0 \leq \theta < 2\pi/n$ and Δ runs over all admissible regular n-gons. We now define the function N_n on \mathcal{F} by

$$N_n(G) = \sup_{P \in G} N_n(G; P), \quad G \in \mathcal{F}.$$

Theorem 3.2. For each natural number $n \geq 2$, N_n is a similarity invariant measure of n-fold symmetry for \mathcal{F}.

Proof. For $G \in \mathcal{F}$, it is obvious that $0 \leq N_n(G) \leq 1$. If G has a positive diameter d, each admissible Δ has diameter no less than d. Hence, the corresponding Q_θ has length bounded away from d. Continuity of N_n follows. By Theorem B, it is not difficult to see that $N_n(G) = 1$, $G \in \mathcal{F}$, if and only if G is n-fold symmetric.

Note that different from M_n ($n=3$, say), the continuity of N_n even holds for a line segment L. In fact, approximating L by sets in \mathcal{F}, we should define $N_2(L) = 1$ and $N_3(L) = \frac{1}{3}$. Next, we find a lower bound of $M_1(G)$, $G \in \mathcal{F}$, larger than zero. We need the following lemma (cf. [1]).

Lemma 3.1. Every convex set of diameter d is contained in a circle of diameter no greater than $2d/\sqrt{3}$.

Theorem 3.3. For each $G \in \mathcal{F}$, $1/2\sqrt{3} \leq N_3(G) \leq 1$.

Proof. For an admissible Δ, let Q_θ be the corresponding 3-star parallel to P_θ. Using Lemma 3.1 and elementary geometry, we see that

$$\sup_{\theta} \frac{|P_\theta|}{|Q_\theta|} \geq \frac{1}{2\sqrt{3}}$$

for every admissible Δ. Hence, the result follows.
REFERENCES

STATE UNIVERSITY OF NEW YORK AT BUFFALO, AMHERST, NEW YORK 14226