CONGRUENCE RELATIONS IN DIRECT PRODUCTS

GRANT A. FRASER AND ALFRED HORN

Abstract. This paper studies conditions under which every congruence relation \(\theta \) in a direct product \(A \times B \) of algebras is of the form \(\theta_1 \times \theta_2 \), where \(\theta_1 \) and \(\theta_2 \) are congruence relations in \(A \) and \(B \) respectively. It is shown that for any equational class \(K \), every such \(\theta \) in every \(A \times B \) in \(K \) has this property if and only if \(K \) satisfies certain identities.

It is well known that if \(A \) and \(B \) are rings with unit element, then every ideal in \(A \times B \) is of the form \(I_1 \times I_2 \), where \(I_1 \) and \(I_2 \) are ideals in \(A \) and \(B \) respectively. In [1, Problem 40], G. Grätzer asks to characterize those equational classes \(K \) of algebras such that for any \(A, B \in K \), every congruence relation \(\theta \) in \(A \times B \) is of the form \(\theta_1 \times \theta_2 \), where \(\theta_1 \) and \(\theta_2 \) are congruence relations in \(A \) and \(B \) respectively. In Theorem 5 below, we shall show that \(K \) can be characterized by Malcev-type conditions, that is, by the existence of certain identities in \(K \).

We restrict our attention to algebras with finitary operations (possibly infinite in number). The set of congruence relations in \(A \) is denoted by \(C(A) \). If \(\theta \in C(A) \), then \(a_1 \theta a_2 \) denotes \((a_1, a_2) \in \theta \). If \(\theta_1 \in C(A) \) and \(\theta_2 \in C(B) \), let \(\theta_1 \times \theta_2 \) be the relation \(\{(a_1, b_1), (a_2, b_2) : a_1 \theta_1 a_2 \text{ and } b_1 \theta_2 b_2\} \). Clearly \(\theta_1 \times \theta_2 \in C(A \times B) \). Let \(I_A = \{(a, a) : a \in A\} \) be the identity relation on \(A \), and \(U_A = A \times A \) be the universal relation on \(A \). If \(a_1, a_2 \in A \), let \(\theta(a_1, a_2) \) be the smallest congruence relation on \(A \) which contains \((a_1, a_2) \).

In \(C(A \times B) \), we let \(\Pi_1 \) denote the kernel of the projection on \(A \). Clearly \(\Pi_1 = \{((a_1, b_1), (a_2, b_2)) : a_1 = a_2 \} = I_A \times U_B \); similarly let \(\Pi_2 = U_A \times I_B \). It is well known (see [1]) that \(C(A) \) is a lattice in which \(\theta_1 \wedge \theta_2 = \theta_1 \cap \theta_2 \), and

\[
\theta_1 \vee \theta_2 = \bigcup_{n<\omega} (\rho_0 \circ \rho_1 \circ \cdots \circ \rho_n),
\]

where \(\rho_i = \theta_1 \) for even \(i \), and \(\rho_i = \theta_2 \) for odd \(i \).

Lemma 1. If \(\rho_1, \theta_1 \in C(A) \) and \(\rho_2, \theta_2 \in C(B) \), then

\[
(\rho_1 \times \rho_2) \vee (\theta_1 \times \theta_2) = (\rho_1 \vee \theta_1) \times (\rho_2 \vee \theta_2).
\]

Received by the editors January 15, 1970.

AMS 1969 subject classifications. Primary 0830; Secondary 0245, 0250.

Key words and phrases. Congruence relation, direct product, equational class.

1 This research was supported in part by NSF grant GP-9044.

2 This problem has been solved independently by Tah-Kai Hu.

390
Proof. It is obvious that $\rho_1 \times \rho_2$ and $\theta_1 \times \theta_2$ are contained in $(\rho_1 \vee \theta_1) \times (\rho_2 \vee \theta_2)$. Now let $(a, b) \in (\rho_1 \vee \theta_1) \times (\rho_2 \vee \theta_2)$. Then for some m, $a \in \phi_0 \circ \cdots \circ \phi_m$ and $b \in \psi_0 \circ \cdots \circ \psi_m$, where $\phi_i = \rho_1$, $\psi_i = \rho_2$ for even i, and $\phi_i = \theta_1$, $\psi_i = \theta_2$ for odd i (since $\phi_0 \circ \cdots \circ \phi_n \subseteq \phi_0 \circ \cdots \circ \phi_{n+1}$); hence

$$(a, b) \in (\phi_0 \circ \cdots \circ \phi_m) \times (\psi_0 \circ \cdots \circ \psi_m) = (\phi_0 \times \psi_0) \circ \cdots \circ (\phi_m \times \psi_m) \subseteq (\rho_1 \times \rho_2) \vee (\theta_1 \times \theta_2).$$

Definition. If $\theta \in C(A \times B)$, we say θ has property P if there exist $\theta_1 \in C(A)$, $\theta_2 \in C(B)$ such that $\theta = \theta_1 \times \theta_2$. We say $A \times B$ has property P if every $\theta \in C(A \times B)$ has property P. If K is a class of similar algebras, we say K has property P if for all $A, B \in K$, $A \times B$ has property P.

It is easily seen that $A \times B$ has property P if and only if the map $(\theta_1, \theta_2) \rightarrow \theta_1 \times \theta_2$ is an isomorphism from $C(A) \times C(B)$ onto $C(A \times B)$.

Theorem 1. Let $\theta \in C(A \times B)$. Then the following are equivalent:

1. θ has property P.
2. $\Pi_2 \cap (\Pi_1 \vee \theta) \subseteq \theta$ and $\Pi_1 \cap (\Pi_2 \vee \theta) \subseteq \theta$.
3. For all $a, a_1, a_2 \in A$ and all $b, b_1, b_2 \in B$, $(a_1, b_1) \theta(a_2, b_2)$ implies $(a_1, b) \theta(a_2, b)$ and $(a, b_1) \theta(a, b_2)$.

Proof. (1) \rightarrow (2): If $\theta = \theta_1 \times \theta_2$ then by Lemma 1,

$$\Pi_2 \cap (\Pi_1 \vee \theta) = \Pi_2 \cap ((I_A \times U_B) \vee (\theta_1 \times \theta_2)) = (U_A \times I_B) \cap (\theta_1 \times U_B) = \theta_1 \times I_B \subseteq \theta,$$

and similarly $\Pi_1 \cap (\Pi_2 \vee \theta) \subseteq \theta$.

(2) \rightarrow (3): Suppose $(a_1, b_1) \theta(a_2, b_2)$. Since $(a_1, b) \Pi_1(a_1, b_1)$ and $(a_2, b_2) \Pi_1(a_2, b)$ we have $(a_1, b)(\Pi_1 \circ \theta \circ \Pi_1)(a_2, b)$. Since $\Pi_1 \circ \theta \circ \Pi_1 \subseteq \theta \circ \Pi_1$, it follows that

$$(a_1, b)(\Pi_2 \cap (\theta \cap \Pi_1))(a_2, b)$$

and by (2), $(a_1, b) \theta(a_2, b)$. Similarly $(a, b_1) \theta(a, b_2)$.

(3) \rightarrow (1): Let

$$\theta_1 = \{(a_1, a_2) : \text{for some } b, (a_1, b) \theta(a_2, b)\},$$

$$\theta_2 = \{(b_1, b_2) : \text{for some } a, (a, b_1) \theta(a, b_2)\}.$$

Then by (3), $a \theta_1 a_2$ implies $(a_1, b) \theta(a_2, b)$ for all $b \in B$. It is very easy to verify that $\theta_1 \in C(A)$, $\theta_2 \in C(B)$ and $\theta = \theta_1 \times \theta_2$.

Corollary 1. If $C(A \times B)$ is a distributive lattice, then $A \times B$ has property P.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Since $\Pi_1 \cap \Pi_3 = I_{A \times B}$, it is easily seen that (2) holds.

Corollary 1 was pointed out to us by Alfred Hales. He gave a different proof of the sufficiency part of the next theorem, from which Corollary 1 also follows.

Theorem 2. If $\theta \in C(A \times B)$, then θ has property P if and only if (4)

$$\pi_1 \vee \theta \cap (\pi_2 \vee \theta) = \theta.$$

Proof. If $\theta = \theta_1 \times \theta_2$, then by Lemma 1,

$$\pi_1 \vee \theta \cap (\pi_2 \vee \theta) = [\pi_1 \times \theta_1] \cap [\pi_2 \times \theta_2] = \theta_1 \times \theta_2 = \theta.$$

Conversely, if (4) holds, then (2) is an immediate consequence.

Theorem 3. Let A and B be similar algebras. Then the following are equivalent:

1. $A \times B$ has property P.
2. For all $a_1, a_2 \in A$ and all $b_1, b_2 \in B$, $\theta(a_1, a_2) \times \theta(b_1, b_2) = \theta((a_1, b_1), (a_2, b_2))$.
3. For all $a_1, a_2, a \in A$ and all $b_1, b_2, b \in B$, $((a_1, b), (a_2, b))$ and $((b_1, b_1), (b_2, b))$ are in $\theta((a_1, b), (a_2, b))$.

Proof. (1) \Rightarrow (2): Clearly, $((a_1, b_1), (a_2, b_2)) \in \theta(a_1, a_2) \times \theta(b_1, b_2)$. Suppose $((a_1, b_1), (a_2, b_2)) \in \theta \in C(A \times B)$. By (1), $\theta = \theta_1 \times \theta_2$ for some $\theta_1 \in C(A)$, $\theta_2 \in C(B)$. Therefore $a_1 \theta a_2$ and $b_1 \theta b_2$. Hence $\theta = \theta_1 \times \theta_2 \supseteq \theta(a_1, a_2) \times \theta(b_1, b_2)$. This proves (2).

(2) \Rightarrow (3): We have $((a_1, b), (a_2, b)) \in \theta(a_1, a_2) \times \theta(b_1, b_2) = \theta((a_1, b_1), (a_2, b_2))$ and similarly $((b_1, b_1), (b_2, b_2)) \in \theta((a_1, b_1), (a_2, b_2))$.

(3) \Rightarrow (1): We show that (3) holds for every $\theta \in C(A \times B)$. Suppose $(a_1, b_1) \theta (a_2, b_2)$. Then $\theta \supseteq \theta((a_1, b), (a_2, b))$. Therefore by (3), (1) follows.

Theorem 4. Let K be any class of similar algebras. Then K has property P if and only if (8)

$$\text{for all } A, B \in K, \text{ all } a_1, a_2 \in A, \text{ and all } b_1, b_2, b \in B, \theta((a_1, b), (a_2, b)) \in \theta((a_1, b_1), (a_2, b_2)).$$

Proof. The necessity of (8) is obvious by (7). To prove the sufficiency, we show that (7) holds for all $A, B \in K$. Let $a_1, a_2, a \in A$ and $b_1, b_2, b \in B$. Then by (8)
Applying (8) to $B \times A$, we have

$$((a_1, b), (a_2, b)) \in \theta((a_1, b_1), (a_2, b_2)).$$

Using the canonical isomorphism of $B \times A$ with $A \times B$, we have

$$((a_1, b_2), (a, b_2)) \in \theta((a_1, b_1), (a_2, b_2)).$$

Corollary 2. If K is an equational class such that for every $A \in K$ with two generators and for every $B \in K$ with three generators, $A \times B$ has property P, then K has property P.

Lemma 2. If $u, v, c_0, c_1 \in A$, then $(u, v) \in \theta(c_0, c_1)$ if and only if for some $m \geq 1$, $n \geq 1$, there exist $(m+1)$-ary polynomials p_1, \ldots, p_n, elements z_{ij} of A for $1 \leq i \leq n$, $1 \leq j \leq m$, and integers $k(1), \ldots, k(n)$ such that

$$k(i) = 0 \text{ or } 1 \quad \text{for } 1 \leq i \leq n,$$

$$u = p_1(c_{k(1)}, z_{i1}, \ldots, z_{im}), \quad v = p_n(c_{1-k(n)}, z_{n1}, \ldots, z_{nm}),$$

$$p_i(c_{1-k(i)}, z_{i1}, \ldots, z_{im}) = p_{i+1}(c_{k(i+1)}, z_{i+1,1}, \ldots, z_{i+1,m})$$

for $1 \leq i \leq n-1$.

Proof. This is a paraphrase of Theorem 3, p. 54 of [1]. As pointed out by G. Grätzer, we may take $m = n$ and $k(i) = 0$ for even i and $k(i) = 1$ for odd i.

Theorem 5. Let K be an equational class of algebras. Then K has property P if and only if for some $n \geq 1$ and some $m \geq 1$, there exist $(m+1)$-ary polynomials p_1, \ldots, p_n, binary polynomials $q_{ij}(x_0, x_1)$ and ternary polynomials $r_{ij}(x_0, x_1, x_2)$ for $1 \leq i \leq n$, $1 \leq j \leq m$, and integers $k(1), \ldots, k(n)$ which are 0 or 1 such that the following identities hold in all members of K:

$$x_0 = p_1(c_{k(1)}, z_{11}, \ldots, z_{1m}), \quad x_1 = p_n(c_{1-k(n)}, z_{n1}, \ldots, z_{nm}),$$

$$p_i(c_{1-k(i)}, z_{i1}, \ldots, z_{im}) = p_{i+1}(c_{k(i+1)}, z_{i+1,1}, \ldots, z_{i+1,m}),$$

$$1 \leq i \leq n - 1,$$

$$x_2 = p_1(c_{k(1)}, r_{11}, \ldots, r_{1m}) = p_n(c_{1-k(n)}, r_{n1}, \ldots, r_{nm}),$$

$$p_i(c_{1-k(i)}, r_{i1}, \ldots, r_{im}) = p_{i+1}(c_{k(i+1)}, r_{i+1,1}, \ldots, r_{i+1,m}),$$

$$1 \leq i \leq n - 1.$$

Proof. Suppose K has property P. Let A be the free K algebra with two free generators x_0, x_1 and B be the free K algebra with three free generators x_0, x_1, x_2. Then by Theorem 4, $((x_0, x_2), (x_1, x_2))$
To obtain (9), we use Lemma 2, the fact that every element of $A \times B$ is of the form $(q(x_0, x_1), r(x_0, x_1, x_2))$, and that $\rho((u_0, v_0), \ldots, (u_m, v_m)) = (\rho(u_0, \ldots, u_m), \rho(v_0, \ldots, v_m))$ for every $(m+1)$-ary polynomial. Conversely, if we assume (9), then by substituting $x_0 = a_0, x_1 = a_1$ in the first three lines of (9) and $x_0 = b_0, x_1 = b_1$ and $x_2 = b$ in the last two lines of (9), we see by Lemma 2 that (8) holds.

We close with some examples and remarks. As pointed out before, the class K_R of all rings with unit element has property P. More generally, if K is such that there exist binary polynomials $+$ and \cdot, and constants (or polynomials which are constant in K) 0 and 1 such that the identities $x \cdot 1 = x + 0 = 0 + x = x$ and $x \cdot 0 = 0$ hold in K, then K has property P. This follows from Theorem 5 with $n = 1, m = 2$, $p_1(x, y, z) = x \cdot y + z, q_{11} = 1, q_{12} = 0, r_{11} = 0, r_{12} = x_2$ and $k(1) = 0$.

Another example is the class K_L of all lattices. In this case, the condition of Theorem 5 holds with $n = 1, m = 2$, $p_1(x, y, z) = (x \wedge y) \vee z, q_{11} = x_0 \wedge x_1, q_{12} = x_0 \wedge x_1, r_{11} = x_2, r_{12} = x_2$ and $k(1) = 0$. The fact that K_L has property P also follows from Corollary 1. Property P also extends to any class K (such as the class of lattice ordered groups) of algebras each of which is a lattice under some of its operations. There exist equational classes K having property P but such that $C(A \times B)$ is not distributive for some $A, B \in K$. As an example, let $K = K_R$ and $A = B =$ the ring of all polynomials in x, y over the rationals. If (p) denotes the principal ideal generated by p, then in $C(A), we have

$$(x + y) \cap ((x) \vee (y)) \subseteq ((x + y) \wedge (x)) \lor ((x + y) \wedge (y)).$$

We may define property P in the obvious way for arbitrary direct products. However, the following theorem shows that property P can only hold for essentially finite direct products.

Theorem 6. If $A = \prod_{i \in I} A_i$ has property P, then A_i has one element for all but a finite number of i.

Proof. Let $\theta = \{(x, y): x(i) = y(i) \text{ for almost all } i\}$. Then $\theta \subseteq C(A)$. If $\theta = \bigcap_{i \in I} \theta_i$, then θ_i must be U_{A_i} for all i, since $x \theta y$ whenever $x(j) = y(j)$ for all $j \in I, j \neq i$. Therefore $\theta = U_{A_i}$, from which it follows that A_i is trivial for almost all i.

References

University of California, Los Angeles, California 90024