NO INFINITE DIMENSIONAL \(P \) SPACE ADMITS A
MARKUSCHEVICH BASIS

WILLIAM B. JOHNSON

Abstract. Theorem. Let \(X \) be a Banach space. If \(X \) is a Grothendieck space and \(X \) admits a Markuschevich basis then \(X \) is reflexive. This theorem is used to prove the conjecture of J. A. Dyer [1] stated in the title.

Recall that a Banach space \(X \) is a Grothendieck space if every weak* convergent sequence in \(X^* \) is weakly convergent. \(X \) is a \(P \) space if \(X \) is complemented in every Banach space which contains it as a subspace.\(^1\) Since a complemented subspace of a Grothendieck space is a Grothendieck space and since every \(P \) space can be embedded in the Grothendieck space \(m(T) \) for a suitable set \(T \), every \(P \) space is a Grothendieck space. Infinite dimensional \(P \) spaces are nonreflexive, so Dyer's conjecture is a consequence of our theorem.

Proof of the Theorem. Suppose that \(\{x_i, f_i\}_{i \in I} \) is a Markuschevich basis for the Grothendieck space \(X \); i.e., \(\{x_i, f_i\}_{i \in I} \) is a biorthogonal collection in \((X, X^*) \) such that \(\{x_i\}_{i \in I} \) is fundamental in \(X \) and \(\{f_i\}_{i \in I} \) is total over \(X \). Let \(Y \) be the norm closure in \(X^* \) of the linear span of \(\{f_i\}_{i \in I} \) and let \(B \) be the closed unit ball of \(Y \).

To show that \(X \) is reflexive it is sufficient to show that \(Y \) is reflexive. (Indeed, \(Y \) is total over \(X \) so that \(Y \) is weak* dense in \(X^* \). If \(B \) is weakly compact,\(^2\) then \(B \) is weak* compact, so that it follows from the Krein-Smulian theorem that \(Y \) is weak* closed and hence \(Y = X^* \).) By Eberlein's theorem, we need to show only that \(B \) is weakly sequentially compact.

Let \(\{y_n\}_{n=1}^\infty \) be a sequence in \(B \). Since each \(y_n \) is the norm limit of a sequence from the linear span of \(\{f_i\}_{i \in I} \), it follows that for each \(n \), the set \(A_n = \{i \in I : y_n(x_i) \neq 0\} \) is countable and thus \(U_{n=1}^\infty A_n \) is countable. A standard diagonalization argument shows that there is an increasing sequence \(\{P(n)\}_{n=1}^\infty \) of positive integers such that \(\lim_{n \to \infty} y_{P(n)}(x_i) \) exists for each \(i \in I \). Since \(\{y_n\}_{n=1}^\infty \) is equicontinuous

--

Presented to the Society, August 25, 1970 under the title Existence theorems for Markuschevich bases in Banach spaces; received by the editors February 24, 1970.

AMS 1969 subject classifications. Primary 4610.

Key words and phrases. Markuschevich basis, complete biorthogonal systems, \(P \) spaces, injective Banach spaces, Grothendieck spaces.

\(^1\) For the basic facts concerning \(P \) spaces see [3]. The most interesting nonreflexive Grothendieck spaces are discussed in [2].

\(^2\) Since the weak topology on \(Y \) by \(Y^* \) is the relativisation to \(Y \) of the weak topology on \(X^* \) by \(X^{**} \), there is no ambiguity in discussing the weak topology on \(Y \).
on X and $\{x_i\}_{i \in I}$ is fundamental in X, $\lim_{n \to \infty} y_{P(n)}(x)$ exists for each $x \in X$. That is, $\{y_{P(n)}\}_{n=1}^\infty$ is weak* convergent to, say, y in X^*. Since X is a Grothendieck space, $\{y_{P(n)}\}_{n=1}^\infty$ is weakly convergent to y. Finally, y is in Y (and hence in B) because the weak and norm closures in X^* of the linear span of $\{f_i\}_{i \in I}$ are the same. Thus B is weakly sequentially compact and the proof is complete.

References

University of Houston, Houston, Texas 77004