Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On representations of selfmappings

Author: Ludvík Janoš
Journal: Proc. Amer. Math. Soc. 26 (1970), 529-533
MSC: Primary 54.60
MathSciNet review: 0270346
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown in this note that every ``mild'' self mapping $ f:X \to X$ of a compact Hausdorff space $ X$ into itself can be represented by the product $ (Y,g) \times (Z,h)$ of two self mappings $ g$ and $ h$, where $ g$ is a contraction $ (\bigcap\nolimits_1^\infty {{g^n}(Y) = {\text{singleton}}} )$ and $ h$ is a homeomorphism of $ Z$ onto itself. Endowing the set of all selfmappings $ {X^X}$ with the compact-open topology, the qualifier ``mild'' means that the closure of the family $ \{ {f^n}\vert n \geqq 1\} \subset {X^X}$ is compact. In case $ X$ is metrizable, some results of M. Edelstein and J. de Groot are used to linearize $ (X,f)$ in the separable Hilbert space.

References [Enhancements On Off] (What's this?)

  • [1] A. D. Wallace, Inverses in Euclidean mobs, Math. J. Okayama Univ. 3 (1953), 23-28. MR 15, 933. MR 0062137 (15:933d)
  • [2] -, The Gebietstreue in semigroups, Nederl. Akad. Wetensch. Proc. Ser. A 59 = Indag. Math. 18 (1956), 271-274. MR 18, 14. MR 0079008 (18:14d)
  • [3] J. De Groot, Linearization of mappings. General topology and its relations to modern analysis and algebra, Proc. Sympos. (Prague, 1961), Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 191-193. MR 26 #2543. MR 0145004 (26:2543)
  • [4] -, Every continuous mapping is linear, Notices Amer. Math. Soc. 6 (1959), 754. Abstract #560-65.
  • [5] M. Edelstein, On the respresentation of mappings of compact metrizable spaces as restrictions of linear transformations, Canad. J. Math. 22 (1970), 372-375. MR 0263040 (41:7645)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.60

Retrieve articles in all journals with MSC: 54.60

Additional Information

Keywords: Representation, self map, mild self map, squeezing self map, Wallace ``Swelling Lemma"
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society