Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On representations of selfmappings


Author: Ludvík Janoš
Journal: Proc. Amer. Math. Soc. 26 (1970), 529-533
MSC: Primary 54.60
MathSciNet review: 0270346
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown in this note that every ``mild'' self mapping $ f:X \to X$ of a compact Hausdorff space $ X$ into itself can be represented by the product $ (Y,g) \times (Z,h)$ of two self mappings $ g$ and $ h$, where $ g$ is a contraction $ (\bigcap\nolimits_1^\infty {{g^n}(Y) = {\text{singleton}}} )$ and $ h$ is a homeomorphism of $ Z$ onto itself. Endowing the set of all selfmappings $ {X^X}$ with the compact-open topology, the qualifier ``mild'' means that the closure of the family $ \{ {f^n}\vert n \geqq 1\} \subset {X^X}$ is compact. In case $ X$ is metrizable, some results of M. Edelstein and J. de Groot are used to linearize $ (X,f)$ in the separable Hilbert space.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Wallace, Inverses in Euclidean mobs, Math. J. Okayama Univ. 3 (1953), 23–28. MR 0062137 (15,933d)
  • [2] A. D. Wallace, The Gebietstreue in semigroups, Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 271–274. MR 0079008 (18,14d)
  • [3] J. de Groot, Linearization of mappings, General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961) Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 191–193. MR 0145004 (26 #2543)
  • [4] -, Every continuous mapping is linear, Notices Amer. Math. Soc. 6 (1959), 754. Abstract #560-65.
  • [5] Michael Edelstein, On the representation of mappings of compact metrizable spaces as restrictions of linear transformations, Canad. J. Math. 22 (1970), 372–375. MR 0263040 (41 #7645)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.60

Retrieve articles in all journals with MSC: 54.60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1970-0270346-X
PII: S 0002-9939(1970)0270346-X
Keywords: Representation, self map, mild self map, squeezing self map, Wallace ``Swelling Lemma"
Article copyright: © Copyright 1970 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia