ON THE IDEAL STRUCTURE OF THE ALGEBRA OF RADIAL FUNCTIONS

ALAN SCHWARTZ

Abstract. Let L denote the convolution Banach algebra of integrable functions defined on \mathbb{R}^n and let L_r consist of the sub-algebra of radial functions. If I is a closed ideal of L, the zero-set of I is defined by $Z(I) = \{ y \mid \hat{f}(y) = 0 \text{ for all } f \in I \}$ where \hat{f} is the Fourier transform of f. The following theorem is proved. If I_1 and I_2 are closed ideals of L_r such that $I_1 \subseteq I_2$ (denotes proper inclusion) then there is a closed ideal I such that $I_1 \subseteq I \subseteq I_2$.

Let n be a fixed positive integer, and let L denote the Banach algebra of integrable functions defined on \mathbb{R}^n with the usual norm and convolution. The practice of identifying two functions which agree almost everywhere will be followed. A function f defined on \mathbb{R}^n is said to be radial if $f(x) = \phi(|x|)$ for some function ϕ defined on $[0, \infty)$ and for almost every x in \mathbb{R}^n; L_r will denote the space of radial functions contained in L. A function in L is radial if and only if its Fourier transform is a radial function (see [1, pp. 69–79]), so L_r is a Banach algebra. If I is a closed ideal of L or of L_r, let

$Z(I) = \{ y \mid \hat{f}(y) = 0 \text{ for every } f \in I \}$.

$Z(I)$ is called the zero-set of I.

Helson showed in [2] that if I_1 and I_2 are closed ideals of L such that $Z(I_1) = Z(I_2)$ and $I_1 \subseteq I_2$ (denotes proper inclusion), then there is a closed ideal I such that $I_1 \subseteq I \subseteq I_2$. In the present paper Helson's theorem will be used to prove the following:

Theorem. If I_1 and I_2 are closed ideals of L_r such that $Z(I_1) = Z(I_2)$ and $I_1 \subseteq I_2$, then there is a closed ideal I of L_r such that $I_1 \subseteq I \subseteq I_2$.

The proof of the theorem will be given later; it is necessary, first, to examine how L_r sits in L.

Let $d\mu$ be the positive measure of unit mass distributed uniformly on the hypersphere $S = \{ x \mid x \in \mathbb{R}^n \text{ and } |x| = 1 \}$, and set

Received by the editors September 5, 1969.

AMS 1969 subject classifications. Primary 4240, 4258.

Key words and phrases. Convolution algebra, Fourier transform, ideal structure, radial functions, zero-sets.

1 Supported by an Assistant Professor Research Grant at the University of Missouri, St. Louis.
\[f_r(x) = \int f(\frac{1}{|x|}y) d\mu(y). \]

The integral must exist for almost every \(x \) by Fubini's theorem since \(\mathbb{R}^n \) can be thought of as a product of two measure spaces: one being \(S \) with the measure \(d\mu \) and the other being \([0, \infty)\) with the measure \(c \mu^{n-1} dp \) where \(dp \) is Lebesgue measure and \(c \) is the surface area of \(S \). It follows from Fubini's theorem that \(f_r \) is in \(L \). Define

\[L_0 = \{ f \mid f \in L \text{ and } f_r(x) = 0 \text{ for almost every } x \in \mathbb{R}^n \}; \]

finally let \(f_0(x) = f(x) - f_r(x) \). The following lemmas list some properties of \(L_r, L_0, f_r, \) and \(f_0 \).

Lemma 1. The map \(f \rightarrow f_r \) is a continuous projection with unit norm, hence its null space \(L_0 \) is closed and so \(L = L_0 \oplus L_r \).

The proof of Lemma 1 follows from the easily verified facts that \(\|f_r\| \leq \|f\| \) and that \(f = f_r \) if \(f \) is radial.

A thorough discussion of this decomposition can be found in [3].

Lemma 2. \(f \) is contained in \(L_0 \) if and only if

\[\int f(\rho y) d\mu(y) = 0 \quad (\rho > 0). \]

Proof. Application of Fubini's theorem yields

\[
\int f(\rho y) d\mu(y) = \int_{\mathbb{R}^n} f(x) dx \left\{ \int \exp(i x \cdot \rho y) d\mu(y) \right\} \\
= \int_{\mathbb{R}^n} f(x) K(x) dx,
\]

where \(K(x) \) is the value of the inner integral. \(K(x) \) is a radial function because \(\mu \) is a weak limit of radial functions and \(K(x) \) is the Fourier-Stieltjes transform of \(\mu \), or see [1, pp. 69–79]. Conversion of the last integral into hyperspherical coordinates yields (2).

To prove the converse, suppose (2) holds for some \(f \) in \(L \). Then

\[
\int f_r^r(\frac{1}{|x|} y) d\mu(y) + \int f_0^r(\frac{1}{|x|} y) d\mu(y) = 0.
\]

The second integral vanishes by the first part of this lemma since \(f_0 \) is in \(L_0 \), and the value of the first integral is \(f_r(x) \). Thus \(f_r = 0 \), so \(f_r = 0 \) and hence \(f \) is in \(L_0 \).
Lemma 3. The convolution of a function in L_0 and a function in L_r is contained in L_0.

Proof. Suppose f is in L_r and g is in L_0. Then for each x in \mathbb{R}^n

$$\int (f \ast g) \, \mu(y) = \int f(x) \, g(x) \, \mu(y)$$

by Lemma 2.

Lemma 4. Let I be a closed ideal of L_r and let K be the closed ideal of L generated by I. Then $I = K \cap L_r$ and $Z(I) = Z(K)$.

Proof. I is contained in K, hence in $K \cap L_r$. The fact that $K \cap L_r$ is contained in I will follow from the stronger fact that if f is in K, then f_r is in I. Suppose

$$f = h + \sum_{i=1}^m h_i \ast g_i \quad (h \in I, h_i \subseteq I, g_i \in L_0; i = 1, 2, \ldots, m).$$

Then $f = h + \sum_{i=1}^m h_i \ast (g_i)_r + \sum_{i=1}^m h_i \ast (g_i)_0$. The second sum is contained in L_0 by Lemma 3 and the first sum is contained in I because I is an ideal of L_r. Finally, the first sum plus h is f_r by Lemma 1; hence if f has the form (3) then f_r is in I. If f is any function in K, there is a sequence $\{f_k\}$ of finite linear combinations of the form of (3) such that f_k converges to f in L. The transformation of f into f_r is continuous on L so $\{(f_k)_r\}$ converges to f_r. Since I is closed, it must contain f_r.

Finally $Z(K) \subseteq Z(I)$ because $I \subseteq K$ and $Z(K) = Z(I)$ since finite linear combinations of the form of (3) are dense in K.

Proof of Theorem. Let K_1 and K_2 be the closed ideals of L generated by I_1 and I_2 respectively. Then $K_1 \subseteq K_2$ by Lemma 4 because $K_1 \cap L_r = I_1 \subseteq I_2 = K_2 \cap L_r$, and

$$Z(K_1) = Z(I_1) = Z(I_2) = Z(K_2).$$

By Helson's theorem there must be a closed ideal K such that $K_1 \subseteq K \subseteq K_2$. Since K_2 is the ideal generated by I_2, it follows that $K \cap L_r \subseteq I_2$. The inclusion $I_1 \subseteq K \cap L_r$ is not immediate. Suppose there is no closed ideal K of L such that

$$I_1 \subseteq K \cap L_r \subseteq I_2,$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
then define \(\mathcal{K} \) to be the collection of all closed ideals of \(L \) such that
\[
K_1 \subset K \subset K_2 \quad \text{and} \quad K \cap L_r = I_1.
\]

Let \(\mathcal{K} \) be ordered by inclusion and let \(K^* \) be the union of all the ideals in a maximal chain of \(\mathcal{K} \).

\(K^* \) is contained in \(\mathcal{K} \). To see this let \(J \) be the closure in \(L \) of \(K^* \).
If \(f \) is in \(K^* \cap L_r \), then \(f \) is in \(K \cap L_r \) for some \(K \) in \(\mathcal{K} \) so \(f \) is in \(I_1 \); thus \(K^* \cap L_r = I_1 \) so \(J \cap L_r = I_1 \). Since \(J \cap L_r = I_1 \), it follows that \(J \subset K_2 \). Since \(K^* \) is a union of elements of \(\mathcal{K} \) it follows that \(K_1 \subset J \subset K_2 \).
Thus \(J \) is in \(\mathcal{K} \) and so \(K^* = J \) by the construction of \(K^* \); hence, \(K^* \) is in \(\mathcal{K} \). It also follows that \(Z(K^*) = Z(K_2) \) because \(K^* \) lies between \(K_1 \) and \(K_2 \).

Helson's theorem can now be invoked to guarantee the existence of an ideal \(K^{**} \) such that \(K^* \subset K^{**} \subset K_2 \). Since \(K^{**} \subset K_2 \) it follows that \(K^{**} \cap L_r \subset I_2 \), and the proper inclusion \(I_1 \subset K^{**} \cap L_r \) holds by the construction of \(K^* \). Thus \(K^{**} \) contradicts our assumption that no ideal of \(L \) satisfies (4).

\textbf{References}