Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A combinatorial problem and congruences for the Rayleigh function


Author: F. T. Howard
Journal: Proc. Amer. Math. Soc. 26 (1970), 574-578
MSC: Primary 10.07
DOI: https://doi.org/10.1090/S0002-9939-1970-0266853-6
MathSciNet review: 0266853
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ z$ be a positive integer and let $ m$ be the number of nonzero terms in the base 2 expansion of $ z$. Define $ f(z,s)$ as the number of positive integers $ r \leqq z/2$ such that the number of nonzero terms in the base 2 expansion of $ r$ plus the number of nonzero terms in the base 2 expansion of $ z - r$ is equal to $ m + s$. We find formulas for $ f(z,s)$ and show how these formulas can be used in proving congruences for the Rayleigh function.


References [Enhancements On Off] (What's this?)

  • [1] P. Bachmann, Niedere Zahlentheorie. Erster Teil; Zweiter Teil: Additive Zahlentheorie, reprint, Chelsea, New York, 1968. MR 39 #25. MR 0238661 (39:25)
  • [2] F. T. Howard, A property of the Rayleigh function, Proc. Amer. Math. Soc. 25 (1970), 719-723. MR 0254286 (40:7495)
  • [3] N. Kishore, The Rayleigh function, Proc. Amer. Math. Soc. 14 (1963), 527-533. MR 27 #1633. MR 0151649 (27:1633)
  • [4] -, The Rayleigh polynomial, Proc. Amer. Math. Soc. 15 (1964), 911-917. MR 29 #6079. MR 0168823 (29:6079)
  • [5] J. Riordan, An introduction to combinatorial analysis, Wiley, New York; Chapman & Hall, London, 1958, MR 20 #3077. MR 0096594 (20:3077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10.07

Retrieve articles in all journals with MSC: 10.07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0266853-6
Keywords: Rayleigh function, Bernoulli numbers, compositions of integers, enumerating generating function
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society