A sphere of vetical order bounds a cell
Author:
L. D. Loveland
Journal:
Proc. Amer. Math. Soc. 26 (1970), 674678
MSC:
Primary 54.78
MathSciNet review:
0268871
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A subset of is said to have vertical order if no vertical line contains more than points of . We prove that each sphere in which has vertical order 5 bounds a cell.
 [1]
J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U. S. A. 10 (1924), 810.
 [2]
R.
H. Bing, Approximating surfaces with polyhedral ones, Ann. of
Math. (2) 65 (1957), 465–483. MR 0087090
(19,300f)
 [3]
C. E. Burgess and J. W. Cannon, Embeddings of surfaces in , Rocky Mt. J. Math. (to appear).
 [4]
James
W. Cannon, *taming sets for crumpled cubes. I.
Basic properties, Trans. Amer. Math. Soc.
161 (1971),
429–440. MR 0282353
(43 #8065), http://dx.doi.org/10.1090/S00029947197102823537
 [5]
, taming sets for crumpled cubes. III: Horizontal sections in closed sets, (to appear).
 [6]
Ralph
H. Fox and Emil
Artin, Some wild cells and spheres in threedimensional space,
Ann. of Math. (2) 49 (1948), 979–990. MR 0027512
(10,317g)
 [7]
R.
A. Jensen and L.
D. Loveland, Surfaces of vertical order 3 are
tame, Bull. Amer. Math. Soc. 76 (1970), 151–154. MR 0250281
(40 #3520), http://dx.doi.org/10.1090/S000299041970124090
 [8]
L.
D. Loveland, Tame subsets of spheres in 𝐸³,
Pacific J. Math. 19 (1966), 489–517. MR 0225309
(37 #903)
 [9]
L.
D. Loveland, Piercing points of crumpled
cubes, Trans. Amer. Math. Soc. 143 (1969), 145–152. MR 0247619
(40 #883), http://dx.doi.org/10.1090/S00029947196902476196
 [10]
D.
R. McMillan Jr., Some topological properties of piercing
points, Pacific J. Math. 22 (1967), 313–322. MR 0216486
(35 #7319)
 [11]
R.
L. Moore, Foundations of point set theory, Revised edition.
American Mathematical Society Colloquium Publications, Vol. XIII, American
Mathematical Society, Providence, R.I., 1962. MR 0150722
(27 #709)
 [1]
 J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U. S. A. 10 (1924), 810.
 [2]
 R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456483. MR 19, 300. MR 0087090 (19:300f)
 [3]
 C. E. Burgess and J. W. Cannon, Embeddings of surfaces in , Rocky Mt. J. Math. (to appear).
 [4]
 J. W. Cannon, taming sets for crumpled cubes. I: Basic properties, (to appear). MR 0282353 (43:8065)
 [5]
 , taming sets for crumpled cubes. III: Horizontal sections in closed sets, (to appear).
 [6]
 R. H. Fox and E. Artin, Some wild cells and spheres in threedimensional space, Ann. of Math. (2) 49 (1948), 979990. MR 10, 317. MR 0027512 (10:317g)
 [7]
 R. A. Jensen and L. D. Loveland, Surfaces of vertical order 3 are tame, Bull. Amer. Math. Soc. 76 (1970), 151154. MR 0250281 (40:3520)
 [8]
 L. D. Loveland, Tame subsets of spheres in , Pacific J. Math. 19 (1966), 489517. MR 37 #903. MR 0225309 (37:903)
 [9]
 , Piercing points of crumpled cubes, Trans. Amer. Math. Soc. 143 (1969), 145152. MR 0247619 (40:883)
 [10]
 D. R. McMillan, Jr., Some topological properties of piercing points, Pacific J. Math. 22 (1967), 313322. MR 35 #7319. MR 0216486 (35:7319)
 [11]
 R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 0150722 (27:709)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
54.78
Retrieve articles in all journals
with MSC:
54.78
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197002688710
PII:
S 00029939(1970)02688710
Keywords:
Tame spheres,
tame surfaces,
embeddings in ,
surfaces in ,
taming sets,
vertical order
Article copyright:
© Copyright 1970
American Mathematical Society
