HIGHER HOMOTOPY COMMUTATIVITY
AND EXTENSION OF MAPS

F. D. WILLIAMS

Abstract. Let \(X \) denote the cartesian product of based spaces,
\(X = X_1 \times \cdots \times X_n \), and \(A = X_1 \vee \cdots \vee X_n \), the subspace consisting of their one-point union. Further, let \(g: A \to Y \) be a map, for \(Y \) any based space. This article develops a criterion for the extendibility of \(g \) to a map \(G: X \to Y \). The criterion is in terms of higher products which live in the Pontryagin ring of \(\Omega Y \), the loop space of \(Y \).

A basic problem in topology is the extension problem: Given spaces \(A \), \(X \), and \(Y \), where \(A \) is a subspace of \(X \), and a map \(g: A \to Y \), can \(g \) be extended to a map \(G: X \to Y \)? In the category of based spaces, an important special case is that in which \(X \) is the cartesian product \(X_1 \times \cdots \times X_n \) of spaces \(X_1, \ldots, X_n \) and \(A = X_1 \vee \cdots \vee X_n \), the subspace consisting of their one-point union. In [6], Samelson treated this case for \(n = 2 \) and \(X_1 \) and \(X_2 \) being spheres, by relating the extension problem to the Pontryagin product in the homology of \(\Omega Y \), the loop space of \(Y \). In this note, Samelson’s method is extended to the general situation of arbitrary \(X_1, \ldots, X_n \) through the use of the higher homotopy commutativity introduced in [7]. The outline is as follows. The first section transforms the extension problem to a problem in higher topological homotopy commutativity, and the second section completes the transfer to a problem in higher algebraic homotopy commutativity. The final section illustrates the method through an application to complex Grassmann manifolds. The author wishes to acknowledge helpful suggestions from G. J. Porter.

1. We begin by recalling the basic definitions of higher homotopy commutativity.

Let \(K_n \) denote the \((n-1)\)-dimensional convex linear cell obtained by taking the convex hull of the orbit of the point \((1, \ldots, n)\) under permutation of the coordinates in \(\mathbb{R}^n \). If \(0 < r < n \), define \(d_r: K_r \times K_{n-r} \to K_n \) by

\[
 d_r(x_1, \ldots, x_r, y_1, \ldots, y_{n-r}) = (x_1, \ldots, x_r, y_1 + r, \ldots, y_{n-r} + r).
\]

The \((n-2)\)-dimensional faces of \(K_n \) are in 1:1 correspondence with the
set of \((p, q)\)-shuffles, \(p + q = n\). If \((A_p, B_q)\) is such a shuffle, then \(V(A_p, B_q) : K_p \times K_q \to K_n\) is the homeomorphism given by \(V(A_p, B_q) = \alpha^{-1} \circ d_p\) where \(\alpha\) is the homeomorphism of \(\mathbb{R}^n\) to itself determined by the action of \((A_p, B_q)\) on the coordinates. For pictures of \(K_n\), as well as further information about the \(K_n\)'s, see [3].

Definition 1. Let \(G\) be an associative \(H\)-space and \(Z_1, \ldots, Z_n\) be pointed spaces. For each \(i\), let \(f_i : Z_i \to G\) be a map. Then a \(C_n\)-form for the \(f_i\)'s consists of a system of maps \(f(i_1, \ldots, i_p) : K_p \times Z_{i_1} \times \cdots \times Z_{i_p} \to G\), indexed by subsequences \((i_1, \ldots, i_p)\) of \((1, \ldots, n)\) such that

\[
f(i) = f_i,
\]

and

\[
f(i_1, \ldots, i_p)[V(A_r, B_s)(\rho, \sigma), x_1, \ldots, x_p] = f(i_{A(1)}, \ldots, i_{A(r)})[\rho, x_{A(1)}, \ldots, x_{A(r)}] \cdot f(i_{B(1)}, \ldots, i_{B(s)})[\sigma, x_{B(1)}, \ldots, x_{B(s)}],
\]

where \((A_r, B_s)\) is an \((r, s)\)-shuffle of \((1, \ldots, p)\), \((\rho, \sigma) \in K_r \times K_s\), and \(x_k \in Z_{i_k}\).

Remarks. Observe that a \(C_2\)-form for two maps \(f_1\) and \(f_2\) is just a homotopy between the product maps \(f_1 \cdot f_2\) and \(f_2 \cdot f_1\). For further intuition into \(C_n\)-commutativity, the reader is referred to p. 193 of [7]. In that paper is defined the notion of \(C_n\)-space: An associative \(H\)-space is a \(C_n\)-space provided that there is a \(C_n\)-form for the maps \(f_1, \ldots, f_n\) where each \(f_i = 1 : G \to G\). Clearly, if \(G\) is a \(C_n\)-space, then any maps \(f_i : Z_i \to G, i = 1, \ldots, n\), possess a \(C_n\)-form.

Now consider maps \(f_i : S Z_i \to Y, i = 1, \ldots, n\), where \(S Z_i\) denotes the suspension of the space \(Z_i\). Then the map \(f : S Z_1 \vee \cdots \vee S Z_n \to Y\) is defined by \(f|SZ_i = f_i\). Suppose that \(f\) extends to \(F : S Z_1 \times \cdots \times S Z_n \to Y\). Then for each subsequence \((i_1, \ldots, i_p)\) of \((1, \ldots, n)\) a map \(F(i_1, \ldots, i_p) : I^p \times Z_{i_1} \times \cdots \times Z_{i_p} \to Y\) is defined by the composition

\[
I^p \times Z_{i_1} \times \cdots \times Z_{i_p} \overset{q}{\to} I \times Z_{i_1} \times \cdots \times I \times Z_{i_p} \overset{r}{\to} S Z_{i_1} \times \cdots \times S Z_{i_p} \overset{s}{\to} Y,
\]

where \(q\) interchanges the factors, \(r\) is the identification map, and \(s = F|S Z_{i_1} \times \cdots \times S Z_{i_p}\). Now let \(\hat{f}(i_1, \ldots, i_p) : [0, p] \times K_p \times Z_{i_1} \times \cdots \times Z_{i_p} \to Y\) be defined as follows.

First, let maps \(\tau_p : [0, p] \times K_p \to I^p\) be defined inductively as follows. Let \(\tau_1 : [0, 1] \times K_1 \to I\) be the identity map \(\tau_1(t, *) = t\). Suppose \(\tau_1\) is.
defined for \(k < p \). Define \(\tau_p \) from \(\text{Bd}([0, \rho] \times K_p) \to \text{Bd}(I^p) \) by \(\tau_p(0, \kappa) = (0, \cdots, 0) \), \(\tau_p(1, \kappa) = (1, \cdots, 1) \), and
\[
\tau_p(t, V(A_r, B_s)(\rho, \sigma)) = [A_r, B_s](1, \cdots, 1, \tau(t - r, \sigma)), \quad \text{for } r \leq t \leq p,
\]
where \(\kappa \in K_p, (\rho, \sigma) \in K_r \times K_s, t \in [0, \rho] \), and \([A_r, B_s] \) denotes the shuffle acting on \(I^p \) by permuting the coordinates. The definition of \(\tau_p \) is completed by regarding \([0, \rho] \times K_p \) and \(I^p \) as the cones on their respective boundaries and extending \(\tau_p \) by linearity. Now let \(f(i_1, \cdots, i_p) \) be defined to be the composition \(F(i_1, \cdots, i_p) \circ (\tau_p \times \text{id}) \). Finally, define \(f(i_1, \cdots, i_p):K_p \times Z_1 \times \cdots \times Z_p \to Y \) by the formula
\[
f(i_1, \cdots, i_p)(\tau, z_1, \cdots, z_p)(t) = f(i_1, \cdots, i_p)(\tau, t, z_1, \cdots, z_p).
\]
(Here \(\Omega Y \) denotes the associative model of the loop space on \(Y \).) It is immediate from the construction that the \(f(i_1, \cdots, i_p) \)'s yield a \(C^\infty \)-form for \(f_i, \cdots, f_n \). This discussion is summarized in the following theorem.

Theorem 2. If a map \(\check{f}:SZ_1 \vee \cdots \vee SZ_n \to Y \) extends to \(F:SZ_1 \times \cdots \times SZ_n \to Y \), then there exists a \(C^\infty \)-form \(f(i_1, \cdots, i_p) \) for the maps \(f_i, \cdots, f_n \) obtained as above.

To return to the general case, let \(X_1, \cdots, X_n \) be spaces, \(g_i:X_i \to Y, i = 1, \cdots, n, \) be maps, and \(g:X_1 \vee \cdots \vee X_n \to Y \) be defined by \(g|X_1 \equiv g_1 \). Suppose that \(g \) extends to \(G:X_1 \times \cdots \times X_n \to Y \). Then for any suspensions \(SZ_1, \cdots, SZ_n \) and maps \(\phi_i:SZ_i \to X_i \), the composition \(\tilde{f} \) given by
\[
\begin{array}{c}
SZ_1 \vee \cdots \vee SZ_n \\
\phi_1 \vee \cdots \vee \phi_n
\end{array}
\begin{array}{c}
\rightarrow X_1 \vee \cdots \vee X_n \\
g \rightarrow Y
\end{array}
\]
extends to \(F:SZ_1 \times \cdots \times SZ_n \to Y \). Thus the following corollary holds.

Corollary 3. Let \(g:X_1 \vee \cdots \vee X_n \to Y \) be a map. If \(g \) extends to a map \(G:X_1 \times \cdots \times X_n \to Y \), then for any choice of spaces and maps \(\phi_i:SZ_i \to X_i \), there is a \(C^\infty \)-form for the maps \(f_i:Z_i \to \Omega Y \) obtained as above.

Remark A. Although the corollary may seem rather unwieldy, in practice there is always a good candidate for the \(\phi_i \), namely the evaluation map \(e_i:SZ_i \to X_i \). For this choice, the maps \(f_i \) are just the looped maps \(\Omega g: \Omega X_i \to \Omega Y \).
Remark B. In [5], the higher Whitehead product set \([f_1, \ldots, f_n]\) was defined, which measured the obstructions to extending \(f\) to \(F\) as in Theorem 2. Analogously, a higher Samelson product set \(\langle f_1, \ldots, f_n \rangle\) may be constructed which measures the obstructions to the existence of a \(C_n\)-form for \(f_1, \ldots, f_n\). In a future paper, the author will construct \(\langle f_1, \ldots, f_n \rangle\) and examine its relationship to \([f_1, \ldots, f_n]\) and to the higher homology commutator products discussed below.

2. In order to transfer our situation to homology groups wherein calculations can be carried out, it is necessary to introduce the homology version of higher homotopy commutativity. Let \(G\) be an associative \(H\)-space.

Definition 4. Let \(a_i \in C_n^i(G), i = 1, \ldots, n,\) be cycles. Then a determining system for a higher commutator product of the \(a_i\)'s is a system of elements \(a(i_1, \ldots, i_p)\) of \(C_*(G)\), indexed by proper subsequences of \((1, \ldots, n)\), such that

\[
a(i) = a_i,
\]

and

\[
\partial a(i_1, \ldots, i_p)
\]

\[
= \sum_{(A_r, B_s)} (-1)^{e(A_r, B_s)} a(i_A(1), \ldots, i_A(r)) a(i_B(1), \ldots, i_B(s)),
\]

where the summation is taken over all shuffles of \((1, \ldots, p)\) and

\[
e(A_r, B_s) = \text{sgn}(A_r, B_s) + (s - 1)(1 + \deg a(i_A(1), \ldots, i_A(r)))
\]

\[
+ \sum_{B(j) < A(k)} \deg a(i_B(j)) \deg a(i_A(k)).
\]

The higher commutator product determined by this system is the homology class of the cycle

\[
\tilde{a}(1, \ldots, n)
\]

\[
= \sum_{(A, B)} (-1)^{e(A, B)} a(A(1), \ldots, A(r)) a(B(1), \ldots, B(s)).
\]

By checking the various signs involved, it is easy to verify that \(\tilde{a}(1, \ldots, n)\) is, in fact, a cycle. The sign is chosen to make Proposition 5 below hold. Observe that if \(a_1, \ldots, a_n\) are all odd-dimensional, then all the signs involved are +1.

The set of all elements obtained in this way from \(a_1, \ldots, a_n\) is called the higher commutator product set of \(a_1, \ldots, a_n\) and denoted by...
Proposition 5. In the above situation, if there exists a C^n-form for the maps f_1, \ldots, f_n, then 0 is an element of $\langle a_1, \ldots, a_n \rangle$.

Proof. Define $a(i_1, \ldots, i_p) = f(i_1, \ldots, i_p) \cdot [k_p \otimes a_{i_1} \otimes \cdots \otimes a_{i_p}]$. Here k_p is the fundamental cell defined in [3]. The signs needed come out of the formula for $d(a_p)$ given in [3] and from the usual signs involved in permuting factors in tensor products.

Note. A consequence of Proposition 5 is that if G is a C^n-space, then all $\langle a_1, \ldots, a_k \rangle, k \leq n$, contain 0. The commutator product version of Lemma 20 of [2] holds in this case to guarantee that if a_1, \ldots, a_{n+1} are all odd-dimensional, then $\langle a_1, \ldots, a_{n+1} \rangle$ consists of a single element.

The following criterion now results from combining Corollary 3 with Proposition 5.

Theorem 6. Suppose the following conditions hold:
\begin{enumerate}
\item $g: X_1 \setminus \cdots \setminus X_n \rightarrow Y$ is a map and $g_i = g|X_i, i = 1, \ldots, n$;
\item Z_1, \ldots, Z_n are spaces and $\phi_i: S Z_i \rightarrow X_i, i = 1, \ldots, n$, are maps;
\item for $i = 1, \ldots, n$, $f_i: Z_i \rightarrow \Omega Y$ is the adjoint to $f_i = g_i \circ \phi_i: S Z_i \rightarrow Y$; and
\item for $i = 1, \ldots, n, \alpha_i \in H^n(Z_i)$ and $a_i = f_i(\alpha_i)$.
\end{enumerate}

Then if g extends to $G: X_1 \times \cdots \times X_n \rightarrow Y$, 0 is an element of $\langle a_1, \ldots, a_n \rangle$.

Remark 7. From an examination of the proof of Proposition 5, we see that if g extends to the cartesian product, then 0 is actually an element of the subset S of $\langle a_1, \ldots, a_n \rangle$ consisting of those higher product elements whose defining systems are made up of elements which possibly might be obtained as images of maps $f(i_1, \ldots, i_p)$.

The next section gives an illustration of how this criterion may be applied to a particular extension problem.

3. Denote by $G_{n,k}$ the complex Grassmann manifold of k-planes in complex $(n+k)$-space. Given an integer k, consider the inclusion $i: G_{k,k} \subseteq G_{3k-1, 2k-1}$. Let a map $g: G_{k,k} \setminus G_{k,k} \setminus G_{k,k} \rightarrow G_{2k-1, 2k-1}$ be defined to be i on each component. Let $f: G_{2k-1, 2k-1} \subseteq G_{3k, 3k}$ be the
inclusion. Then it is well known that \(jg \) can be extended to map \(G_{k,k} \times G_{k,k} \times G_{k,k} \) into \(G_{2k,2k} \) (this is the way the multiplication is defined to make \(BU \), the classifying space for the infinite unitary group, into an \(H \)-space). Here it will be shown that this is the best possible dimension, i.e. that \(g \) itself does not extend.

To recreate the situation of Theorem 6, let \(Y = G_{2k-1}, \ 3k-1, \ X_i = G_{k,k}, \ Z_i = S^{2k-1} \), and \(\phi_i : S^{2k} \to X_i \) represent a generator of \(\pi_{2k}(G_{k,k}) \), for \(i = 1, 2, 3 \). Thus in this case, each \(f_i \) represents a generator of \(\pi_{2k-1}(\Omega Y) \). We choose each \(\alpha_i \in H_*(S^{2k-1}) \) to be the generator in dimension \(2k-1 \), thus \(u_i = f_i*(\alpha_i) \) is known to be \((k-1)! \) times the generator of \(H_{2k-1}(\Omega Y) \). In order to compute the higher product set \(\langle a_1, a_2, a_3 \rangle \), we need a good chain complex at hand to give the homology of \(\Omega Y \). The cobar construction fills the bill.

Recall that the ring structure of \(H_*(G_{l,m}) \) is obtained by taking the graded ring of formal power series \(\Gamma \) on generators \(\sigma_1, \ldots, \sigma_m \), \(\dim(\sigma_i) = 2i \), and adding the relations \(\sigma_i = 0, \ i > l \), defined as follows. Let \(\sigma = 1 + \sigma_1 + \cdots + \sigma_m \), let \(\tilde{\sigma} \) be the formal inverse of \(\sigma \) in \(\Gamma \), and then let \(\tilde{\sigma} \) be the component of \(\tilde{\sigma} \) of degree \(2i \).

The cobar construction for \(\Omega Y \) is begun by forming the tensor algebra on generators \(\{ u \} \) in dimensions one lower than the generators \(\{ t \} \) of \(H_*(\Omega Y) \). The differential operator, \(d \), is defined as follows. For example, if \(u \) corresponds to \(t \), then define \(d(u) = \sum u_i \otimes u'_i \), where \(\Delta(t) = \sum t_i \otimes t'_i \) and the \(t_i \) and \(t'_i \) correspond to \(u_i \) and \(u'_i \) respectively. The complex thus obtained is chain equivalent to the singular chain complex of \(\Omega Y \), cf [1].

In \(H_*(\Omega Y) \), let \(t(i_1, \ldots, i_p) \) denote the element dual to \(\sigma_1^{i_1} \cdots \sigma_p^{i_p} \), \(i_1 \leq i_2 \leq \cdots \leq i_p \). In the cobar construction, let \(u(i_1, \ldots, i_p) \) correspond to \(t(i_1, \ldots, i_p) \). A straightforward computation yields that at the chain level, there is a nonzero integer \(b \) such that \((u(i_1), \ldots, u(i_p)) = b \cdot d(u(i_1, \ldots, i_p)) \), if \(\deg((u(i_1), \ldots, u(i_p))) < 6k - 2 \). Now each element \(a_i \) is represented at the chain level by \((k-1)! \) times \(u(k) \). The determining system induced by the multiplication map \(G_{k,k} \times G_{k,k} \to G_{2k,2k} \) yields the element \(v = 6(k-1)! \cdot u(k, k)u(k) + u(k)u(k, k) \) as an element of \(\langle a_1, a_2, a_3 \rangle \). The relation \(\tilde{\sigma}_{2k} = 0 \) implies that this element is not a boundary. According to Remark 6, we need only consider elements of \(\langle a_1, a_2, a_3 \rangle \) which arise from maps \(K_2 \times S^{2k-1} \times S^{2k-1} \to \Omega Y \). But any such element differs from \(v \) by a multiple of the element \((k-1)! \cdot (u(k)u(2k) + u(2k)u(k)) \), and again, the relation \(\tilde{\sigma}_{2k} = 0 \) implies that no such element is a boundary. Hence \(g \) does not extend to the cartesian product.
References

New Mexico State University, Las Cruces, New Mexico 88001