COMPLETENESS OF HAMILTONIAN VECTOR FIELDS

DAVID G. EBIN

Abstract. We prove that under certain conditions the flow of a Hamiltonian vector field on a possibly infinite-dimensional dynamical system exists for all time.

We shall prove that under certain natural conditions the Hamiltonian vector field of a (possibly infinite-dimensional) dynamical system has integral curves which extend for all time. W. Gordon [3] has proved the result in the case of Euclidean space. We are grateful to J. Marsden for suggesting the problem and to W. Meyer for useful conversations.

Let M be a smooth Hilbert manifold with a Riemannian structure, (\langle , \rangle), let $V_0: M \to \mathbb{R}$ be a smooth function and let $V = V_0 \circ \pi$ where $\pi: T(M) \to M$ is the projection map of the tangent bundle. Define $H: T(M) \to \mathbb{R}$ by $H = K + V$ where K, the kinetic energy, is defined by $K(V) = \frac{1}{2} \langle V, V \rangle$.

It is well known that T^*M (and by means of (\langle , \rangle), TM) has a natural symplectic two-form Ω, and the equation $i(Z)\Omega = dH$ can be used to define a vector field Z on TM [4, p. 110].

Theorem. If M is complete under the metric induced by (\langle , \rangle) and if V is bounded below, then all integral curves of Z extend for all time. Equivalently the flow $F: TM \times \mathbb{R} \to TM$ which satisfies $(\frac{dF}{dt})(X, s) = Z_{F(X, s)}$ is defined on all of $TM \times \mathbb{R}$.

To prove the theorem we must construct a Riemannian structure for TM and this we do by use of the affine connection.

It is well known that (\langle , \rangle) defines a unique connection and for each $p \in M$ and $X \in T_p M$, V defines a splitting of $T_p TM$ into vertical and horizontal subspaces; i.e. $T_p TM = V \oplus \mathcal{H}$, [2]. Also there are canonical linear isomorphisms $L: V \to T_p M$ and $T\pi: \mathcal{H} \to T_p M$, $T\pi$ being the tangent map to π. We define an inner product, $\langle \langle , \rangle \rangle$, on $T_p TM$ by declaring V and \mathcal{H} perpendicular and L and $T\pi$ isometries. This clearly defines a Riemannian structure for $T(M)$.

Lemma. $\langle \langle , \rangle \rangle$ induces a complete metric on TM.

Received by the editors February 23, 1970.

AMS 1969 subject classifications. Primary 3465, 3480; Secondary 7040.

Key words and phrases. Hamiltonian vector field, Hilbert manifold, Riemannian structure, symplectic two-form, vertical subspace, horizontal subspace, spray, complete metric.
Proof. Let \(\{X_i\} \) be a Cauchy sequence in \(TM \) and let \(p_i = \pi(X_i) \).
For any \(q \in M \) and \(y \in T_q M \), \(T\pi: T_q TM \to T_q M \) is distance decreasing. Hence \(\pi \) decreases the length of curves, so \(\{p_i\} \) is Cauchy in \(M \).

Let \(p = \lim_{i \to \infty} \{p_i\} \) and choose a closed neighborhood \(U \) about \(p \) and a chart \(\varphi: U \to E \). (\(E \) is a Hilbert space on which \(M \) is modeled.) \(\varphi \) induces a chart \(T\varphi: T(U) \to E \times E \) in a standard way [4, p. 40], and for any sufficiently large \(X_i \in T(U) \). We can assume that \(\varphi(U) \) is a closed ball in \(E \) in which case \(T\varphi(T(U)) = \varphi(U) \times E \) is a closed subset of \(E \times E \). \(\varphi(U) \times E \) is therefore complete as a metric subspace of \(E \times E \), so if we can show \(\{T\varphi(X_i)\} \) is Cauchy in \(\varphi(U) \times E \) then \(\{T\varphi(X_i)\} \) will converge and so will \(\{X_i\} \).

To show \(\{T\varphi(X_i)\} \) Cauchy, we make \(\varphi: U \to E \) a normal coordinate chart so that \(TT\varphi: T_x TM \to U \times E \times E \times E \) is an isometry for all \(y \in \pi^{-1}(p) \), and so that there exists a constant \(A \) such that for any \(W \in TTU \), \(\|TT\varphi W\| \leq A\|W\| \). The existence of such an \(A \) means that all curves in \(TU \) are stretched, under the map \(T\varphi \), by at most a factor of \(A \). Then, letting \(p \) be the metric on \(TM \), we must show that for \(i, j \) sufficiently large and for any curve \(\gamma \) of length sufficiently close to \(\rho(X_i, X_j) \), \(\gamma \) is contained in \(TU \). If this is true, \(T\varphi(\gamma) \) has length at most \(A \) times the length of \(\gamma \) and the distance between \(T\varphi(X_i) \) and \(T\varphi(X_j) \) is at most \(A \rho(X_i, X_j) \).

To show curves such as \(\gamma \) are contained in \(T(U) \) we assume \(U \) is a metric ball about \(p \) of radius \(3\varepsilon \). Then let \(V \subseteq U \) be the ball of radius \(\varepsilon \), and pick \(i, j \) sufficiently large so that \(\rho(X_i, X_j) < \varepsilon \) and \(X_i, X_j \in T(V) \). Then if \(\gamma \) is a curve from \(X_i \) to \(X_j \) of length less than \(2\varepsilon \), \(\gamma_0 = \pi \circ \gamma \) must also have length less than \(2\varepsilon \) so \(\gamma_0 \subseteq U \). Thus \(\gamma \subseteq TU \), \(T\varphi(\gamma) \) has length at most \(2A\varepsilon \), and the distance from \(T\varphi(X_i) \) to \(T\varphi(X_j) \) is therefore at most \(2\varepsilon \). Hence \(\{T\varphi(X_i)\} \) is Cauchy and the lemma is proven.

Proof of Theorem. Consider the equation \(i(Z)\Omega = dH \) and let \(Z = S + G \) where \(S \) satisfies \(i(S)\Omega = dK \) and \(G \) satisfies \(i(G)\Omega = dV \). Then \(S \) is the spray of the Riemannian metric \(\langle , \rangle \) [4, p. 110], and \(G \) is the vertical lift of \(\text{grad } V \); i.e. \(G_x = L^{-1}(\text{grad } V) \) where \(L: U \to T\pi(a) M \). (See [1].)

Let \(c: (a, b) \to TM \) be a maximal integral curve of \(Z \). We wish to show that \(a = -\infty \), \(b = \infty \), and to do this, we first assume \(a \) (respectively \(b \)) finite and show \(\lim_{t \to a} \{c(t)\} \) (respectively \(\lim_{t \to b} c(t) \)) exists in \(TM \). Then by the fundamental theorem of ordinary differential equations [4], the domain of \(c \) extends to \((a + \varepsilon, b) \) (respectively \((a, b + \varepsilon) \)). This contradicts the maximality of \((a, b) \) and proves the theorem.

The main fact needed to show \(\lim_{t \to a} \{c(t)\} \) exists, is that \(H \) is constant along \(c \). This is simply conservation of energy and is proven.
Let N be the lower bound for V and let $N_1 = H(c)$. Then $K < c$ is bounded by $N_1 - N$.

Let $c_0 = \pi \circ c$, a curve in M. Then c_0', the tangent vector to c_0 satisfies $c_0'(t) = T\pi (c'(t)) = T\pi (Z_{c(t)})$. But $T\pi (Z_{c(t)}) = T\pi (S_{c(t)}) = c(t)$ since G is vertical and S is a spray. Therefore since K is bounded on c, the length of $c_0'(t)$ is bounded and, since M is complete, $\lim_{t \to b} \{c_0(t)\}$ exists. Let $c_0(b) = \lim_{t \to b} \{c_0(t)\}$.

Now we seek a limit of $c(t)$ in $\pi^{-1}(c_0(b))$. To show that it exists we must only show that $c'(t)$ is bounded in the metric on TM. $c'(t) = Z_{c(t)} = S_{c(t)} + G_{c(t)}$, and S and G are horizontal and vertical respectively. Also $G_{c(t)}$ depends only on $c_0(t)$ and since $c_0(t)$ extends continuously to $c_0(b)$, $G_{c(t)}$ remains bounded as $t \to b$. Also $\|S_{c(t)}\| = \|c(t)\|$, from the definition of the metric on TM. It follows that $\|c'(t)\| = \|S_{c(t)}\| + \|G_{c(t)}\|$ remains bounded as $t \to b$, so $c(t)$ converges. The same argument works as $t \to a$, and the theorem follows.

Remark 1. If M is finite-dimensional, one can use local compactness of TM instead of a metric on TM, so the proof is much shorter.

Remark 2. It is easy to show that the theorem is false if M is not complete or V is not bounded below. There are counterexamples even if M is one-dimensional.

References

STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11970.