Sets of lattice points which contain a maximal number of edges
Author:
G. F. Clements
Journal:
Proc. Amer. Math. Soc. 27 (1971), 1315
MSC:
Primary 05.04
MathSciNet review:
0270923
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: How should one select an element subset of a rectangular array of lattice points (points with integral coordinates) in dimensional Euclidean space so as to include the largest possible number of edges (pairs of points differing in exactly one coordinate)? It is shown that the generalized Macaulay theorem due to the author and B. Lindström contains the (known) solution.
 [1]
A.
J. Bernstein, Maximally connected arrays on the
𝑛cube, SIAM J. Appl. Math. 15 (1967),
1485–1489. MR 0223260
(36 #6308)
 [2]
G.
F. Clements and B.
Lindström, A generalization of a combinatorial theorem of
Macaulay, J. Combinatorial Theory 7 (1969),
230–238. MR 0246781
(40 #50)
 [3]
L.
H. Harper, Optimal assignments of numbers to vertices, J. Soc.
Indust. Appl. Math. 12 (1964), 131–135. MR 0162737
(29 #41)
 [4]
G.
Katona, A theorem of finite sets, Theory of graphs (Proc.
Colloq., Tihany, 1966) Academic Press, New York, 1968,
pp. 187–207. MR 0290982
(45 #76)
 [5]
Joseph
B. Kruskal, The number of simplices in a complex, Mathematical
optimization techniques, Univ. of California Press, Berkeley, Calif.,
1963, pp. 251–278. MR 0154827
(27 #4771)
 [6]
J.
B. Kruskal, The number of 𝑠dimensional faces in a complex:
An analogy between the simplex and the cube, J. Combinatorial Theory
6 (1969), 86–89. MR 0236030
(38 #4328)
 [7]
John
H. Lindsey II, Assignment of numbers to vertices, Amer. Math.
Monthly 71 (1964), 508–516. MR 0168489
(29 #5751)
 [1]
 A. J. Bernstein, Maximally connected arrays on the cube, SIAM J. Appl. Math. 15 (1967), 14851489. MR 36 #6308. MR 0223260 (36:6308)
 [2]
 G. F. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230238. MR 0246781 (40:50)
 [3]
 L. H. Harper, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math. 12 (1964), 131135. MR 29 #41. MR 0162737 (29:41)
 [4]
 G. Katona, A theorem of finite sets, Proc. Colloq. Theory of Graphs (Tihany, Hungary, 1966) Academic Press, New York and Akad. Kiadó, Budapest, 1968. MR 38 #1016. MR 0290982 (45:76)
 [5]
 J. B. Kruskal, The number of simplices in a complex, Mathematical Optimization Techniques, Univ. of California Press, Berkeley, Calif., 1963, pp. 251278. MR 27 #4771. MR 0154827 (27:4771)
 [6]
 , The number of dimensional faces in a complex: An analogy between the simplex and the cube, J. Combinatorial Theory 6 (1969), 8689. MR 38 #4328. MR 0236030 (38:4328)
 [7]
 J. H. Lindsey, Assignment of numbers to vertices. Amer. Math. Monthly 71 (1964), 508516. MR 29 #5751. MR 0168489 (29:5751)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
05.04
Retrieve articles in all journals
with MSC:
05.04
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197102709237
PII:
S 00029939(1971)02709237
Keywords:
Lattice points,
maximal number of edges,
generalized Macaulay theorem,
dimensional Euclidean space
Article copyright:
© Copyright 1971
American Mathematical Society
