Sets of lattice points which contain a maximal number of edges

Author:
G. F. Clements

Journal:
Proc. Amer. Math. Soc. **27** (1971), 13-15

MSC:
Primary 05.04

DOI:
https://doi.org/10.1090/S0002-9939-1971-0270923-7

MathSciNet review:
0270923

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: How should one select an -element subset of a rectangular array of lattice points (points with integral coordinates) in -dimensional Euclidean space so as to include the largest possible number of edges (pairs of points differing in exactly one coordinate)? It is shown that the generalized Macaulay theorem due to the author and B. Lindström contains the (known) solution.

**[1]**A. J. Bernstein,*Maximally connected arrays on the 𝑛-cube*, SIAM J. Appl. Math.**15**(1967), 1485–1489. MR**0223260**, https://doi.org/10.1137/0115129**[2]**G. F. Clements and B. Lindström,*A generalization of a combinatorial theorem of Macaulay*, J. Combinatorial Theory**7**(1969), 230–238. MR**0246781****[3]**L. H. Harper,*Optimal assignments of numbers to vertices*, J. Soc. Indust. Appl. Math.**12**(1964), 131–135. MR**0162737****[4]**G. Katona,*A theorem of finite sets*, Theory of graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York, 1968, pp. 187–207. MR**0290982****[5]**Joseph B. Kruskal,*The number of simplices in a complex*, Mathematical optimization techniques, Univ. of California Press, Berkeley, Calif., 1963, pp. 251–278. MR**0154827****[6]**J. B. Kruskal,*The number of 𝑠-dimensional faces in a complex: An analogy between the simplex and the cube*, J. Combinatorial Theory**6**(1969), 86–89. MR**0236030****[7]**John H. Lindsey II,*Assignment of numbers to vertices*, Amer. Math. Monthly**71**(1964), 508–516. MR**0168489**, https://doi.org/10.2307/2312587

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05.04

Retrieve articles in all journals with MSC: 05.04

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1971-0270923-7

Keywords:
Lattice points,
maximal number of edges,
generalized Macaulay theorem,
-dimensional Euclidean space

Article copyright:
© Copyright 1971
American Mathematical Society