A PRIMARY DECOMPOSITION FOR TORSION MODULES

J. S. ALIN

Abstract. A definition of primary module is given and a theorem is proved characterizing rings for which each torsion module, in the sense of S. E. Dickson, decomposes as a direct sum of its primary submodules. This theorem is applied to obtain a generalization of Fuchs' theorem on the additive group structure of Artinian rings.

1. Introduction. S. E. Dickson [2], [3] has investigated a primary decomposition for torsion modules over an arbitrary ring and Alin [1] has characterized rings for which this primary decomposition holds. The purpose of this note is to define "primary module" in such a way that the primary decomposition holds for a larger class of rings, in particular, for all Noetherian rings.

All rings R have a unit and modules are unitary left R-modules. If M is an R-module, M^+ denotes the underlying additive group of M. It is well known that if S is a simple R-module, then S^+ is a direct sum of copies of Z_p, the cyclic group of order p, or a direct sum of copies of Q, the additive group of rational numbers. In the first case we say that S is of type p and in the second, S is of type Q.

Let p_1, p_2, \cdots be an indexing of the positive primes and for each $i = 0, 1, \cdots$ let S_i be a representative set of simple R-modules of type p_i. Let S_0 be a representative set of simple R-modules of type Q. For $i = 0, 1, \cdots$ let S_i be the torsion class generated by S_i and let S be the torsion class generated by $\bigcup_{i=0}^\infty S_i$ [4]. Thus S_i (respectively S) is the class of all modules M such that each nonzero homomorphic image of M has a submodule isomorphic to a member of S_i (respectively, $\bigcup_{i=0}^\infty S_i$). The classes S_i, S_0, S_1, \cdots are closed under submodules, direct sums, extensions and homomorphic images. It follows that each module M has a unique largest submodule M_i in S_i. If $M \in S_i$, $i \geq 1$, M is p_i-primary and if $M \in S_0$, M is Q-primary. The modules $M \in S_0$ are called torsion. The primary decomposition holds for a ring R if and only if for each $M \in S_0$, $M = \sum_{i=0}^\infty M_i$ (direct), i.e., each torsion module is a direct sum of its primary submodules.

For an R-module M, $\text{Soc}(M)$ denotes the socle of M. We let $T^1(M) = \text{Soc}(M)$ and extend to an ascending chain of submodules $\{ T^*(M) \}$.
of M in the usual manner [1]. If $M \in 3$, $T^\alpha(M) = M$ for some ordinal α and the least such ordinal is the T-length of M.

For any module M, M_i denotes the usual torsion subgroup of the group M^+ and M_p for a prime p, denotes the maximum p-primary subgroup of M^+. Note that M_i and M_p are submodules of M.

We use $\text{Ext}(A, B)$ for $\text{Ext}^1_R(A, B)$ and $\text{Hom}(A, B)$ for $\text{Hom}_R(A, B)$. The reader is referred to MacLane [6] for the properties of Ext which are used in what follows.

2. The main theorem. The following lemma, in part characterizing the primary submodules of a module M, will be needed in the proof of the main theorem.

Lemma 2.1. Let $M \in 3$. Then

1. $M_i = M_{p_i}$ for $i \geq 1$.
2. $(M_0)^+$ is a torsion-free divisible group.

Proof. (1) Clearly $\text{Soc}(M_i) \subseteq M_{p_i}$ and by induction it is easy to see that $M_i \subseteq M_{p_i}$. But M_i and M_{p_i} are submodules of M so M_{p_i}/M_i is either zero or it has a simple submodule, since $M \in 3$. The latter choice leads to a contradiction, hence $M_i = M_{p_i}$.

(2) It is clear that $\text{Soc}(M_0)$ is divisible and torsion-free. Assume inductively that $T^\alpha(M_0)$ is divisible and torsion-free. Then since

$$T^{\alpha+1}(M_0)/T^\alpha(M_0) = \text{Soc}(M_0/T^\alpha(M_0))$$

is a direct sum of Q-type simples and since

$$0 \to T^\alpha(M_0) \to T^{\alpha+1}(M_0) \to T^{\alpha+1}(M_0)/T^\alpha(M_0) \to 0$$

is exact, we get that $T^{\alpha+1}(M_0)$ is torsion-free divisible, since the class of torsion-free divisible groups is closed under extensions. Since $M \in 3$, $T^\beta(M_0) = M_0$ for some β and so M_0 is torsion-free divisible. This completes the proof.

Remarks. (1) From the previous lemma and the primary decomposition for torsion abelian groups, the primary decomposition holds for any ring which has no Q-type simple modules. In fact, over any ring, if $M \in 3$ and $M_0 = 0$, we get $M = \sum_{i=1}^\infty M_i$.

(2) For any module M, $\sum_{i \neq j} M_i$ cannot contain a simple from the class s_1 and consequently $\sum_{i=0}^\infty M_i$ is always a direct sum.

Lemma 2.2. The primary decomposition holds for the ring R if and only if $\text{Ext}(S, T) = 0$ for each Q-type simple S and each module $T \in 3$ with $T_0 = 0$.

Proof. The necessity of the condition is clear since if $0 \to T \to X \to S \to 0$ is exact and the primary decomposition holds, we
must have \(X = X_0 \oplus \sum_{i=1}^n X_i \) with \(X_0 \approx S \) and this implies that the sequence splits.

To prove that the condition is sufficient, let \(M \in \mathfrak{S} \). We will prove that \(M = \sum_{i=0}^n M_i \) by showing that \(M/\sum_{i=0}^n M_i \) has no simple submodule. By Lemma 2.1, \(\sum_{i=1}^n M_i = M_0 \), so \(\sum_{i=0}^n M_i = M_0 + M_t \). Also by 2.1, \(M_0 \) is divisible and so as groups we have

\[
\frac{M}{M_t} \approx \frac{M_0 + M_t}{M_t} \oplus \frac{K}{M_t}.
\]

Thus any subgroup of \(M/M_0 + M_t \) is isomorphic to a subgroup of \(K/M_t \). Hence \(M/M_0 + M_t \) contains no \(p \)-type simple since \(K/M_t \) is torsion-free as a group.

Assume \(M/M_0 + M_t \) has a \(Q \)-type simple, say \(S = X/M_0 + M_t \), \(X \subseteq M \). Now \(M_0 + M_t/M_0 \approx M_t \) so we have an exact sequence

\[
0 \to \frac{M_0 + M_t}{M_0} \approx M_t \to \frac{X}{M_0 + M_t} = S \to 0.
\]

By hypothesis, this sequence must split, so \(X/M_0 \) contains a \(Q \)-type simple. Thus \(M/M_0 \) contains a \(Q \)-type simple and this is a contradiction. Hence \(M/M_0 + M_t \) has no simple submodule, so \(M = \sum_{i=0}^n M_i \) and the proof is complete.

Theorem 2.3. The primary decomposition holds for the ring \(R \) if and only if

1. \(\prod_{S \in \mathfrak{S}} S/\sum_{S \in \mathfrak{S}} S \approx 0 \), where \(\mathfrak{C} \) is a representative set of simples of type \(p \).
2. If \(0 \to P \to K \to U \to 0 \) is an exact sequence of \(R \)-modules with \(K \) cyclic, \(P \in \mathfrak{S}_i \) for some \(i \geq 1 \) and \(U \) a \(Q \)-type simple, then \(P \) has nonlimit ordinal \(T \)-length.

Proof. To see that the first condition is necessary, suppose \(U \) is a \(Q \)-type simple contained in the factor module \(\prod S/\sum S \). Then we have an exact sequence \(0 \to \sum S \to X \to U \to 0 \), where \(X \subseteq \prod S \). Since the primary decomposition holds, \(X \approx U \oplus \sum S \). But then \(U \subseteq X \subseteq \prod S \) so

\[
0 \neq \text{Hom}(U, U) \subseteq \text{Hom}(U, \prod S) = \prod \text{Hom}(U, S) = 0
\]

and we have a contradiction.

If \(0 \to P \to K \to U \to 0 \) is exact as in (2) above, then \(K \approx P \oplus U \) and so \(P \) is cyclic. It follows that \(P \) has nonlimit ordinal \(T \)-length.

To show that (1) and (2) are sufficient, we use Lemma 2.2 and show \(\text{Ext}(T, U) = 0 \) for \(U \) a \(Q \)-type simple and \(T \in \mathfrak{S}_i, T_0 = 0 \).
By previous remarks, \(T = \sum_{i=0}^{\alpha} T_i \) and applying \(\text{Hom}(U, -) \) to the exact sequence

\[
0 \rightarrow \sum T_i \rightarrow \prod T_i \rightarrow \prod T_i/\sum T_i \rightarrow 0
\]

we get the exact sequence

\[
\text{Hom}(U, \prod T_i/\sum T_i) \rightarrow \text{Ext}(U, \sum T_i) \rightarrow \text{Ext}(U, \prod T_i).
\]

But \(\text{Ext}(U, \prod T_i) = \prod \text{Ext}(U, T_i) \) so to show that the condition of Lemma 2.2 holds it is sufficient to prove:

(a) \(\text{Hom}(U, \prod T_i/\sum T_i) = 0 \),

(b) \(\text{Ext}(U, T_i) = 0 \) for \(i \geq 1 \).

By (1) and an easy modification of Lemma 2.2 of [2], (a) holds. We prove that (b) holds by showing \(\text{Ext}(U, A) = 0 \) for any \(p_i \)-primary module \(A \). The proof is by induction on the \(T \)-length of \(A \).

If \(A \) is a \(p_i \)-primary module of \(T \)-length one, then \(A = \sum S_{\alpha} \) where each \(S_{\alpha} \) is a \(p_i \)-type simple. As before

\[
\text{Hom}(U, \prod S_{\alpha}/\sum S_{\alpha}) \rightarrow \text{Ext}(U, \sum S_{\alpha}) \rightarrow \text{Ext}(U, \prod S_{\alpha})
\]

is exact with right end zero since \(\text{Ext}(U, S_{\alpha}) = 0 \) because \(U \) and \(S_{\alpha} \) are simples of different type. Since \(p_i U = U \), but \(p_i(\prod S_{\alpha}/\sum S_{\alpha}) = 0 \), we must have \(\text{Hom}(U, \prod S_{\alpha}/\sum S_{\alpha}) = 0 \). Hence \(\text{Ext}(U, A) = 0 \) if \(A \) has \(T \)-length one.

Now assume \(\text{Ext}(U, A) = 0 \) for all \(p_i \)-primary modules \(A \) of \(T \)-length \(\alpha < \beta \) and let \(B \) have \(T \)-length \(\beta \).

\[
(*) \quad 0 \rightarrow B \rightarrow X \rightarrow U \rightarrow 0
\]

is exact with \(B \rightarrow X \) the inclusion map, choose \(x \in X - B \). Then

\[
0 \rightarrow B \cap Rx \rightarrow Rx \rightarrow U \rightarrow 0
\]

is exact, the \(T \)-length of \(B \cap Rx \) is less than or equal to \(\beta \) and it is not a limit ordinal by (2). Let the \(T \)-length of \(B \cap Rx \) be \(\alpha + 1 \). Then

\[
0 \rightarrow B \cap Rx \rightarrow T^\alpha(B \cap Rx) \rightarrow Rx \rightarrow U \rightarrow 0
\]

is exact and since \(B \cap Rx / T^\alpha(B \cap Rx) \) has \(T \)-length one, the sequence must split. Thus there is a submodule \(K \) of \(Rx \) containing \(T^\alpha(B \cap Rx) \) with \(U \approx K / T^\alpha(B \cap Rx) \). Then

\[
0 \rightarrow T^\alpha(B \cap Rx) \rightarrow K \rightarrow U \rightarrow 0
\]

is exact and since \(T^\alpha(B \cap Rx) \) has \(T \)-length \(\alpha < \beta \), this sequence must split. Thus \(K \) contains a submodule isomorphic to \(U \) and so since
3. Applications and examples.

Theorem 3.1. Let R be a ring with the property that every maximal left ideal L of R, with R/L a Q-type simple, is finitely generated. Then the primary decomposition holds for R.

Proof. We apply Theorem 2.3 and show that conditions (1) and (2) hold.

Let $0 \to P \to K \to U \to 0$ be exact with K cyclic and U a Q-type simple. Then for some left ideals $L \subseteq M$ of R we have $P \approx M/L$ and $U \approx R/M$. But then M is finitely generated so M/L, and hence P, cannot have limit ordinal T-length. Thus (2) holds.

Let $U = R(x_n + \sum S) \subseteq \prod S/ \sum S$ where the product and sum are taken over the set C as in (1) of 2.3. Let $M = (\sum S_i(x_i))$. Then $U \approx R/M$, so $M = \text{Ann}_R P + \cdots + \text{Ann}_R U$ is finitely generated, since U is of type Q. Now for each i, $m_i x_i = 0$ for all but finitely many $S \in C$. Hence there is an $x_{i_0} \neq 0$ such that $M x_{i_0} = 0$. But then $Rx_{i_0} \approx S_0 \approx R/M \approx U$ and this is a contradiction since S_0 is of type p. Hence (1) of 2.3 is satisfied and the proof is complete.

The following corollary generalizes part of Fuchs' Theorem 72.2 [5].

Corollary 3.2. Let R satisfy the hypothesis of 3.1 and assume non-zero R-modules have nonzero socles. Then R is the ring direct sum of two sided ideals R_0, R_1, \ldots, R_n where R_0^+ is a direct sum of copies of Q and each $R_i^+, 1 \leq i \leq n$, is a bounded primary group.

Proof. Since nonzero modules have nonzero socles, $R \in \Sigma$ and since by 3.1 the primary decomposition holds, we have $R = \sum_{i=0}^\infty R_i$. Since R has a unit element, $R = R_0 \oplus \cdots \oplus R_n$. Each of the classes R_i is closed under homomorphic images and right multiplication by elements of R is a left R-homomorphism so each R_i is a two-sided ideal. R_0 is a torsion-free divisible group and so it is a direct sum of copies of Q. Each $R_i, 1 \leq i \leq n$, is a primary group by Lemma 2.1 and since each R_i is a ring with unit, it must be a bounded group. This proves the corollary.

To construct examples of non-Artinian rings satisfying the hypotheses of Corollary 3.2, let P be an infinite product of copies of Z_p. Define the ring R by $R^+ = P \oplus Z_p$ and $(p_1, i_1)(p_2, i_2) = (i_2 p_1 + i_1 p_2, i_1 i_2)$. Then P is the socle of R and $R/P \approx Z_p$; so nonzero modules have nonzero socles. Since R has no Q-type simples, the hypothesis of 4.1 is clearly satisfied. Since every subgroup of P is an ideal of R, it is clear that R is neither Artinian or Noetherian.
References