NOTE ON THE EMBEDDING OF MANIFOLDS IN EUCLIDEAN SPACE

J. C. BECKER AND H. H. GLOVER

ABSTRACT. M. Hirsch and independently H. Glover have shown that a closed k-connected smooth n-manifold M embeds in \mathbb{R}^{2n-j} if M_0 immerses in \mathbb{R}^{2n-j-1}, $j \leq 2k$ and $2j \leq n-3$. Here M_0 denotes M minus the interior of a smooth disk. In this note we prove the converse and show also that the isotopy classes of embeddings of M in \mathbb{R}^{2n-j} are in one-one correspondence with the regular homotopy classes of immersions of M_0 in \mathbb{R}^{2n-j-1}, $j < 2k - 1$ and $2j < n - 4$.

1. Introduction. Let M be a closed k-connected smooth n-manifold and let M_0 denote M minus the interior of a smooth disk. Hirsch [6] and Glover [2] have shown that M embeds in \mathbb{R}^{2n-j} if M_0 immerses in \mathbb{R}^{2n-j-1}, $j \leq 2k$ and $2j \leq n-3$. In this note we will apply the technique of [2] to prove

(1.1) Theorem. Suppose $j \leq 2k$ and $2j \leq n-3$. Then M embeds in \mathbb{R}^{2n-j} if and only if M_0 immerses in \mathbb{R}^{2n-j-1}.

(1.2) Theorem. Suppose $j \leq 2k - 1$ and $2j \leq n-4$. There is a one-one correspondence between the isotopy classes of embeddings of M in \mathbb{R}^{2n-1} and the regular homotopy classes of immersions of M_0 in \mathbb{R}^{2n-j-1}.

For $k > 0$, these extend results of Haefliger and Hirsch [5] over a range of $(k-1)$-dimensions.

Let ν denote a normal m-plane bundle over M, $m > n$, ν_0 its restriction to M_0 and $\nu_0(j+1)$ the associated bundle with fibre $V_{m-m-n-j+1}$. According to Hirsch (see [7, Theorem 1.2]), the regular homotopy classes of immersions of M_0 in \mathbb{R}^{2n-j-1} are in one-one correspondence with the vertical homotopy classes of sections to $\nu_0(j+1)$, which we denote by $C(\nu_0(j+1))$. In §5 we will show that $C(\nu_0(j+1)) \cong [M_0; V_{m-m-n-j+1}]$. Thus we have the following classification theorem.

(1.3) Corollary. Suppose $j \leq 2k - 1$ and $2j \leq n-4$. If M embeds in \mathbb{R}^{2n-j}, the isotopy classes of embeddings of M in \mathbb{R}^{2n-j} are in one-one correspondence with the elements of $[M_0; V_{m-m-n-j+1}]$, $m > n$.

Received by the editors July 10, 1969.

AMS 1970 subject classifications. Primary 57D40.

Key words and phrases. Tubular neighborhood, deleted product, equivariant map, obstruction theory, Postnikov resolution.

1 The first author was supported by National Science Foundation Grant GP 24498, the second by Grant GP 5252.
2. The deleted product. Let $T(M)$ denote the tangent bundle of M and Δ the diagonal of $M \times M$. The open disk of radius r in \mathbb{R}^n will be denoted by D^r_Δ. Fix $p \in M$ and let $\phi: \mathbb{R}^n \to M$ be a diffeomorphism onto an open neighborhood of p such that $\phi(0) = p$. Using a suitable partition of unity, construct a Riemannian metric ρ on $T(M)$ such that $T(\phi): D^r_\Delta \times \mathbb{R}^n \to T(M)$ is metric preserving. Now choose ϵ so that $0 < \epsilon < 1/3$ and $E_\rho: T_\epsilon(M) \to M \times M$ by $E_\rho(v) = (\exp_\rho(v_2), \exp_\rho(-v_2))$ embeds $T_\epsilon(M)$ as a tubular neighborhood of the diagonal. Here $T_\epsilon(M)$ denotes the disk bundle of radius ϵ. Let U, V and W denote the image under ϕ of D^n_ϵ, $D^n_{2\epsilon}$ and $D^n_{3\epsilon}$ respectively. We may assume that ϵ is small enough that

\[(2.1) \quad T_\epsilon(M) \cap (M \times U \cup \overline{U} \times M) \subseteq \phi(D^n_\epsilon) \times \phi(D^n_\epsilon).\]

Now the following properties are easily established.

\[(2.2) \quad T_\epsilon(M - V) \cap (M \times U \cup U \times M) = \Phi.\]

\[(2.3) \quad M \setminus V = M \times \{p\} \cup \{p\} \times M \text{ is a strong deformation retract of } M \times U \cup U \times M \cup \text{Int } T_\epsilon(V).\]

\[(2.4) \quad \Delta \cup \{p\} \times M \text{ is a strong deformation retract of } \text{Int } T_\epsilon(M) \cup U \times M \cup W \times U.\]

\[(2.5) \quad \Delta \cup (M \times \{p\}) \text{ is a strong deformation retract of } \text{Int } T_\epsilon(M) \cup M \times U \cup U \times W.\]

\[(2.6) \quad X = M \times M - (\text{Int } T_\epsilon(M) \cup U \times W \cup W \times U) \text{ is a strong deformation retract of } M \times M - \Delta.\]
Set \(A = X \cap (M \times U \cup U \times M) \) and note that (2.2) implies that \(S_\varepsilon(M - V) \subseteq X - A \), where \(S_\varepsilon(M - V) \) is the sphere bundle of radius \(\varepsilon \) over \(M - V \).

(2.7) Lemma. \(H^{2n-j}(X - A, S_\varepsilon(M - V)) = 0, j \leq 2k + 1 \).

Proof. We have

\[
H^{2n-j}(X - A, S_\varepsilon(M - V)) = H^{2n-j}(X - A \cup T_\varepsilon(M - V), T_\varepsilon(M - V))
\]

\[
= H^{2n-j}(X - A \cup T_\varepsilon(M - V)).
\]

Now note that

\[
X - A \cup T_\varepsilon(M - V) = M \times M - (M \times U \cup U \times M \cup \text{Int } T_\varepsilon(V)).
\]

Then by Poincaré duality and (2.3) we have

\[
H^{2n-j}(X - A \cup T_\varepsilon(M - V))
\]

\[
= H_j(M \times M, M \times U \cup U \times M \cup \text{Int } T_\varepsilon(V))
\]

\[
= H_j(M \times M, M \lor M) = 0, \quad j \leq 2k + 1.
\]

3. Equivariant maps. In this section we will record a few facts about equivariant maps which will be needed later. If \(X \) and \(Y \) are spaces with an involution, let \(E(X, Y) \) denote the set of equivariant homotopy classes of equivariant maps from \(X \) to \(Y \).

(3.1) Suppose \(Y \) is a finite CW-complex with a fixed point free cellular involution \(\alpha \). Let \(q \geq 0 \). There is a finite CW-complex \(Z \) with a fixed point free cellular involution and equivariant inclusion \(Y \subseteq Z \) such that

(a) \(Z \) is \((q-1)\)-connected,

(b) \(Z - Y \) consists of cells of dimension \(\leq q \).

Proof. Suppose \(Y \) is \((s-1)\)-connected. Let \([f_1] \cdots [f_t]\) generate \(\pi_s(Y) \) and let

\[
Z_1 = D^{s+1} \cup_{f_1} Y \cup_{\alpha f_1} D^{s+1}.
\]

Extend \(\alpha \) to an involution on \(Z_1 \) by interchanging the cells. Let \(i_1: Y \rightarrow Z_1 \) denote the inclusion. Then \(Z_1 \) is \((s-1)\)-connected and \(\pi_s(Z_1) \) is generated by \(i_{1*}[f_2] \cdots i_{1*}[f_t] \). Continue in this way.

(3.2) Let \(X \) and \(Y \) be finite CW-complexes with a fixed point free cellular involution and let \(f: X \rightarrow Y \) be equivariant. Suppose \(f^*: H^q(Y) \rightarrow H^q(X) \) is an isomorphism, \(q > t \), and is onto \(q = t \). Then \(f^*: E(Y, S^q) \rightarrow E(X, S^q) \) is one-one, \(q > t \), and is onto, \(q = t \).

This is well known from obstruction theory.

4. Proof of (1.1) and (1.2). Take \(Y \) to be \(S_\varepsilon(M - V) \) and \(q \) to be
\(2n - 2k - 2\) in (3.1) and let \(i: S_\epsilon(M - V) \to Z\) denote the inclusion. Because of statement (b) in (3.1) we have

\[(4.1) \text{Lemma. } i^*: H^{2n-j}(Z) \to H^{2n-j}(S_\epsilon(M - V)) \text{ is an isomorphism, } j \leq 2k + 1, \text{ and is onto, } j = 2k + 2.\]

By (2.7), \(i\) can be extended to an equivariant map

\[(4.2) \lambda: X - A \to Z.\]

We will now apply a construction of Glover [2]. Notice that

\[X = (X - A) \cup (U \times (M - W)) \cup ((M - W) \times U).\]

Let \(\Sigma(Z)\) denote the suspension of \(Z\) with the suspended involution and extend \(\lambda\) to an equivariant map

\[(4.3) \lambda: X \to \Sigma(Z)\]

by

\[\lambda(tv, y) = i^*(v, y) + (1 - t)s^+ \quad \text{and} \quad \lambda(y, tv) = i^*(y, v) + (1 - t)s^-\]

where \(v \in \text{Bdy}(U), y \in M - W, 0 \leq t \leq 1, \) and \(s^+, s^-\) are the north and south pole of \(\Sigma(Z)\) respectively.

\[(4.4) \text{Lemma. } \lambda^*: H^{2n+1-j}(\Sigma(Z)) \to H^{2n+1-j}(X) \text{ is an isomorphism, } j \leq 2k + 1, \text{ and is onto, } j = 2k + 2.\]

Proof. Let

\[X^+ = (X - A) \cup (U \times (M - W)), \quad X^- = (X - A) \cup ((M - W) \times U),\]

and let \(C^+(Z)\) and \(C^-(Z)\) denote the upper and lower cone in \(\Sigma(Z)\).

By (2.5)

\[(4.5) H^{2n-j}(X^+) \cong H_j(M \times M, \text{Int } T_\epsilon(M) \cup U \cup U \times W) \cong H_j(M \times M, \Delta \cup \{p\} \times M) = 0, \quad j \leq 2k + 1.\]

Similarly, by (2.6)

\[(4.6) H^{2n-j}(X^-) = 0, \quad j \leq 2k + 1.\]

By (2.7) and (4.1)

\[(4.7) \lambda^*: H^{2n-j}(Z) \to H^{2n-j}(X - A)\]
is an isomorphism, \(j \leq 2k + 1 \), and is onto, \(j = 2k + 2 \). The proof is now completed by comparing the Mayer-Vietoris sequence of \(\{ C^+(Z); C^-(Z) \} \) with that of \(\{ X^+; X^- \} \).

Now consider the maps

\[
\Sigma(S_+(M - V)) \xrightarrow{\Sigma(i)} \Sigma(Z) \xrightarrow{\lambda} X \subseteq M \times M - \Delta.
\]

Because of (2.6), \(X \) and \(M \times M - \Delta \) are equivariantly homotopy equivalent. Combining (4.1) and (4.4) with (3.2) and Theorem (2.5) of [1] we have

(4.9) Suppose \(j \leq 2k \). There is an equivariant map \(M \times M - \Delta \to S^{2n - j - 1} \) if and only if there is an equivariant map \(S_+(M - V) \to S^{2n - j - 2} \).

(4.10) Suppose \(j \leq 2k \). There is a one-one correspondence \(E(M \times M - \Delta, S^{2n - j}) \to E(S_+(M - V), S^{2n - j - 1}) \).

Theorems (1.1) and (1.2) now follow from the work of Haefliger [3] and Haefliger and Hirsch [4].

5. Proof of (1.3). This is proved by applying the following lemma to \(\nu_0(j + 1) \).

(5.1) Lemma. Suppose \(\beta = (E, B, p) \) is a fibration which admits a cross-section. Assume that \(B \) is \(k \)-connected and \((n - k) \)-coconnected and the fibre \(F \) is \((n - 2k - 1) \)-connected. Then \(C(\beta) \cong [B; F] \).

Proof. Set \(q = n - k - 1 \) and let \(\beta^{(q)} = (E^{(q)}, B, p^{(q)}) \) with fibre \(F^{(q)} \) denote the \(q \)th term in a Postnikov resolution of \(\beta \). Let \(\delta : B \to E^{(q)} \) be a cross-section and choose base-points \(b_0 \in B \) and \(x_0 = \delta(b_0) \in F^{(q)} \). The partial lifting \(g : B \vee F^{(q)} \to E^{(q)} \) of the projection \(\rho_1 : B \times F^{(q)} \to B \) defined by \(g(b, x_0) = \delta(b), b \in B \), and \(g(b_0, x) = x \), \(x \in F^{(q)} \), extends to a lifting \(\tilde{g} : B \times F^{(q)} \to E^{(q)} \) since \(H^r(B \times F^{(q)}, B \vee F^{(q)}; \pi_{r-1}(F^{(q)})) = 0, r \geq 0 \). Therefore \(\beta^{(q)} \) is weakly fibre homotopy equivalent to the product \((B \times F^{(q)}, B, \rho_1) \) so that \(C(\beta^{(q)}) \cong [B; F^{(q)}] \).

Finally, since \(B \) is \((q + 1) \)-coconnected \(C(\beta) \cong C(\beta^{(q)}) \) and \([B; F] \cong [B; F^{(q)}] \).

References

University of Massachusetts, Amherst, Massachusetts 01003

Ohio State University, Columbus, Ohio 43210