Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Note on the embedding of manifolds in Euclidean space


Authors: J. C. Becker and H. H. Glover
Journal: Proc. Amer. Math. Soc. 27 (1971), 405-410
MSC: Primary 57.20
DOI: https://doi.org/10.1090/S0002-9939-1971-0268903-0
MathSciNet review: 0268903
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: M. Hirsch and independently H. Glover have shown that a closed $ k$-connected smooth $ n$-manifold $ M$ embeds in $ {R^{2n - j}}$ if $ {M_0}$ immerses in $ {R^{2n - j - 1}},j \leqq 2k$ and $ 2j \leqq n - 3$. Here $ {M_0}$ denotes $ M$ minus the interior of a smooth disk. In this note we prove the converse and show also that the isotopy classes of embeddings of $ M$ in $ {R^{2n - j}}$ are in one-one correspondence with the regular homotopy classes of immersions of $ {M_0}$ in $ {R^{2n - j - 1}},j \leqq 2k - 1$ and $ 2j \leqq n - 4$.


References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. MR 29 #613. MR 0163310 (29:613)
  • [2] H. H. Glover, On embedding and immersing manifolds in euclidean space, Thesis, University of Michigan, Ann Arbor, Mich., 1967.
  • [3] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962/63), 155-176. MR 28 #625. MR 0157391 (28:625)
  • [4] A. Haefliger and M. Hirsch, Immersions in the stable range, Ann. of Math. (2) 75 (1962), 231-241. MR 26 #784. MR 0143224 (26:784)
  • [5] -, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135. MR 26 #6981. MR 0149494 (26:6981)
  • [6] M. Hirsch, Embeddings and compressions of polyhedra and smooth manifolds, Topology 4 (1966), 361-369. MR 32 #6478. MR 0189051 (32:6478)
  • [7] I. James and E. Thomas, Note on the classification of cross-sections, Topology 4 (1966), 351-359. MR 35 #3685. MR 0212820 (35:3685)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57.20

Retrieve articles in all journals with MSC: 57.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0268903-0
Keywords: Tubular neighborhood, deleted product, equivariant map, obstruction theory, Postnikov resolution
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society