FACTORIZATION OF DIFFERENTIAL OPERATORS

ANTON ZETTL

Abstract. A necessary and sufficient condition for a differential operator of order \(n \) to be factorable into a product of operators of orders \(n-r \) and \(r \), for any \(0 < r < n \), is given.

Consider differential operators of the form

\[
Ly = s_0 y^{(n)} + s_1 y^{(n-1)} + \cdots + s_n y
\]

with \(s_i \) continuous for \(i = 0, \ldots, n \) and \(s_0(t) \neq 0 \).

Theorem. Suppose \(L \) is an operator of order \(n \) of type (*) and \(0 < r < n \). Then there exist operators \(P \) and \(Q \) both of type (*) of orders \(n-r \) and \(r \) respectively such that \(L = PQ \) on some interval \(I \) if and only if there exist \(r \) linearly independent solutions \(y_1, \ldots, y_r \) of \(Ly = 0 \) satisfying the condition that the Wronskian \(W_r = W_r(y_1 \cdots y_r) \neq 0 \) on \(I \).

Proof. Suppose \(L = PQ \) where \(Q \) has order \(r \). Since any solution of \(Qy = 0 \) is also a solution of \(Ly = 0 \), we can choose any \(r \) linearly independent solutions of \(Qy = 0 \) and condition \(W_r \neq 0 \) will be satisfied.

On the other hand, assume \(Ly_i = 0 \) for \(i = 1, \ldots, r \) and \(W_r(y_1 \cdots y_r) \neq 0 \). Let

\[
Qy = \det \begin{bmatrix} y_1 & \cdots & y_r & y \\ y_1' & \cdots & y_r' & y' \\ \vdots & & \vdots & \vdots \\ y_1^{(r)} & \cdots & y_r^{(r)} & y^{(r)} \end{bmatrix} = q_0 y^{(r)} + q_1 y^{(r-1)} + \cdots + q_r y.
\]

Note that \(q_0 = W_r(y_1 \cdots y_r) \neq 0 \) and \(q_i \in C^{n+1-r-i} \). A direct computation shows that the coefficients \(p_i \) for \(i = 0, \ldots, n-r \) can be chosen successively so that the coefficients of \(y^{(n)}, y^{(n-1)}, \ldots, y^{(n-r)} \) in the product \(PQy \) where \(Py = p_0 y^{n-r} + \cdots + p_{n-r} y \) are \(s_0, s_1, \ldots, s_r \), respectively. Hence the operator \(N = L - PQ \) is of order less than \(r \). But \(y_1, \ldots, y_r \) are linearly independent solutions of \(Ny = 0 \). Hence \(N = 0 \) and \(L = PQ \).

Although the above theorem may have been known to Ince—see

Received by the editors July 20, 1970.

AMS 1970 subject classifications. Primary 34A30, 34A05; Secondary 34A01.

Key words and phrases. Ordinary differential equations, factoring differential operators, Frobenius factorization, Pólya's property "W", Wronskians, linear homogeneous differential equations.
the discussion on pp. 119 and 126–127 in [1]—the author has not seen an explicit statement of it anywhere in the literature.

The conditions $W_r \neq 0$ for $r = 1, \ldots, n - 1$ are known to be necessary and sufficient for the factorability of an operator of type (*) into a "product" of first order operators—see [2].

References

Northern Illinois University, De Kalb, Illinois 60115