CONTINUUM NEIGHBORHOODS AND FILTERBASES

DAVID P. BELLAMY1 AND HARVEY S. DAVIS2

Abstract. In this paper we prove that if \(\Gamma \) is a filterbase of closed subsets of a compact Hausdorff space then \(T(\cap \Gamma) = \bigcap \{ T(G) \mid G \in \Gamma \} \), where \(T(A) \) denotes the set of those points for which every neighborhood which is a continuum intersects \(A \) nonvoidly.

Introduction. In this paper \(S \) denotes a compact Hausdorff space. If \(p \in S \) and \(W \subset S \), then \(W \) is a continuum neighborhood of \(p \) iff \(W \) is a subcontinuum of \(S \) and \(p \in \text{Int}(W) \). If \(A \subset S \), \(T(A) \) denotes the complement of the set of those points \(p \) of \(A \) for which there exists a continuum neighborhood which is disjoint from \(A \) [1]. \(S \) is said to be \(T \)-additive iff for every collection \(\Lambda \) of closed subsets of \(S \) whose union is closed, \(T(\cup \Lambda) = \bigcup \{ T(L) \mid L \in \Lambda \} \) [2]. The following three theorems are established.

Theorem A. Let \(\Gamma \) be a filterbase of closed subsets of \(S \). Then \(T(\cap \Gamma) = \bigcap \{ T(G) \mid G \in \Gamma \} \).

Theorem B. \(S \) is \(T \)-additive iff for each pair \(A, B \) of closed subsets of \(S \), \(T(A \cup B) = T(A) \cup T(B) \).

Theorem C. Let \(A \) be a closed subset of \(S \). If \(K \) is a component of \(T(A) \) then \(T(A \cap K) = K \cup T(\emptyset) \).

Theorem A is used in establishing Theorems B and C. Theorem C is used to obtain the known result that if \(S \) and \(W \) are continua and \(W \subset S \) then \(W \) is a continuum [1].

Proof of Theorem A. It is immediate from the definition that whenever \(A \subset B \), \(T(A) \subset T(B) \) and thus \(T(\cap \Gamma) \subset \bigcap \{ T(G) \mid G \in \Gamma \} \).

Suppose \(p \in T(\cap \Gamma) \). There exists \(W \), a subcontinuum of \(S \), such that \(p \in \text{Int}(W) \) and \(W \cap (\cap \Gamma) = \emptyset \). Since \(W \) is compact, there exists a finite collection \(G_1, \ldots, G_n \) of elements of \(\Gamma \) whose intersection is disjoint from \(W \). By hypothesis there exists \(G \), an element of \(\Gamma \), which is contained in \(G_1 \cap \cdots \cap G_n \). Since \(G \) is disjoint from \(W \), \(p \in T(G) \). Hence \(p \in \bigcap \{ T(G) \mid G \in \Gamma \} \) and thus

Received by the editors January 6, 1970.

AMS 1969 subject classifications. Primary 5455; Secondary 5465.

Key words and phrases. Compact Hausdorff space, continuum neighborhood, \(T(A) \), \(T \)-additive, filterbase, component.

1 Research supported in part by the University of Delaware Research Foundation.
2 Research supported in part by the National Science Foundation NSF 71-1550.
\[T(\cap \Gamma) = \cap \{ T(G) \mid G \in \Gamma \}. \]

Proof of Theorem B. The necessity of the condition is clear. Let \(\Lambda \) be a collection of closed subsets of \(S \) whose union is closed in \(S \). Since \(T(\cup \Lambda) \supseteq \bigcup \{ T(L) \mid L \in \Lambda \} \), it need only be shown that \(T(\cup \Lambda) \subseteq \bigcup \{ T(L) \mid L \in \Lambda \} \) in order to establish the sufficiency of the condition.

Suppose \(x \in \bigcup \{ T(L) \mid L \in \Lambda \} \). Then for each \(L \in \Lambda \) let \(F(L) \) be the collection of closed subsets \(A \) of \(S \) such that \(L \subseteq \text{Int}(A) \). If \(L = \emptyset \), clearly \(T(L) = \bigcap \{ T(A) \mid A \in F(L) \} \). If \(L \neq \emptyset \), then \(F(L) \) is a filterbase of closed subsets of \(S \) and, since \(\cap F(L) = L \), \(T(L) = \bigcap \{ T(A) \mid A \in F(L) \} \) by Theorem A.

Hence, for each \(L \), \(x \in \bigcap \{ T(A) \mid A \in F(L) \} \) and thus there exists, for each \(L \), \(x \in F(L) \), such that \(x \in T(f(L)) \). \(\{ \text{Int}(f(L)) \mid L \in \Lambda \} \) is an open covering of \(\cup \Lambda \). Since \(\cup \Lambda \) is compact there exists a finite subcollection \(\Gamma \) of \(\{ f(L) \mid L \in \Lambda \} \) such that \(\cup \{ \text{Int}(f(L)) \mid L \in \Gamma \} \subseteq \cup \{ T(G) \mid G \in \Gamma \} \). Since for all \(G \in \Gamma \), \(x \in T(G) \), it follows that \(x \in T(\cup \Lambda) \). Thus \(T(\cup \Lambda) \subseteq \bigcup \{ T(L) \mid L \in \Lambda \} \).

Proof of Theorem C. Two technical lemmas are established. Theorem C follows easily from these two lemmas and Theorem A.

Lemma 1. Let \(A \) be a subset of \(S \). \(p \in S - T(A) \) iff there is a subcontinuum \(W \) and an open subset \(Q \) of \(S \) such that \(p \in \text{Int}(W) \cap Q \), \(\text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap A \cap Q = \emptyset \).

Proof. Let \(p \in S - T(A) \). There is a subcontinuum \(W \) of \(S \) such that \(p \in \text{Int}(W) \) and \(W \cap A = \emptyset \). Since \(S \) is regular there is an open subset \(Q \) of \(S \) such that \(p \in Q \) and \(\text{Cl}(Q) \subseteq \text{Int}(W) \). It is clear that \(\text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap A \cap Q = \emptyset \).

Now suppose that there is a subcontinuum \(W \) and an open subset \(Q \) of \(S \) such that \(p \in \text{Int}(W) \cap Q \), \(\text{Fr}(Q) \cap T(A) = \emptyset \) and \(W \cap A \cap Q = \emptyset \). Since \(\text{Fr}(Q) \) is compact and disjoint from \(T(A) \), there exists a finite collection \(\{ W_i \} \) of subcontinua of \(S \), all disjoint from \(A \), such that \(\cup \{ \text{Int}(W_i) \} \supset \text{Fr}(Q) \). Since if \(W \subseteq Q \) it is immediate that \(p \in S - T(A) \), assume \(W \cap S - Q \neq \emptyset \). The closure of each component of \(W \cap Q \) must intersect at least one of the \(W_i \)'s, since \(\text{Fr}(Q) \subseteq \cup \{ W_i \} \).

Hence \((W \cap Q) \cup (\cup \{ W_i \}) = H \) has only a finite number of components. Since \(p \in \text{Int}(W) \cap Q \), there is a component \(K \) of \(H \) such that \(p \in \text{Int}(K) \) and, of course, \(K \cap A \subseteq H \cap A = \emptyset \). Thus \(p \in S - T(A) \).

Lemma 2. Let \(A \) be a subset of \(S \). If \(T(A) = M \cup N \) separate then \(T(A \cap M) = M \cup T(\emptyset) \).
Proof. Suppose $p \in T(A \cap M) - (M \cup T(\varnothing))$. Since $p \in T(\varnothing)$, there is a subcontinuum W of S such that $p \in \text{Int}(W)$. Since S is normal, there is an open subset Q of S containing N whose closure is disjoint from M. It is clear that $p \in \text{Int}(W) \cap Q$, $\text{Fr}(Q) \cap T(A \cap M) \subseteq \text{Fr}(Q) \cap T(A) = \varnothing$ and $W \cap (A \cap M) \cap Q \cap Q \cap M = \varnothing$. Hence, by Lemma 1, $p \in T(A \cap M)$, thus contradicting the supposition.

Now suppose that $p \in (M \cup T(\varnothing)) - T(A \cap M)$. Since $p \in T(A \cap M)$ and $\varnothing \subseteq A \cap M$, $p \in T(\varnothing)$. Hence $p \in M$. There is an open subset Q of S containing M whose closure is disjoint from N. Since $p \in T(A \cap M)$, there is a subcontinuum W of S such that $p \in \text{Int}(W) \cap Q$ and $W \cap (A \cap M) = \varnothing$. It is clear that $p \in \text{Int}(W) \cap Q$ and $\text{Fr}(Q) \cap T(A) = \varnothing$. Since $Q \cap N = \varnothing$, $W \cap A \cap Q = W \cap (A \cap M) = \varnothing$. Hence, by Lemma 1, $p \in T(A)$ so $p \in M$, thus contradicting the supposition.

Now in order to establish Theorem C, let A be a closed subset of S and K be a component of $T(A)$. Let $\{K_a\}$ be the collection of all subsets of $T(A)$ such that $K \in \{K_a\}$ and K_a is both open and closed in $T(A)$. Note that the collection $\{A \cap K_a\}$ can only fail to be a filter-base if for some K_a, $A \cap K_a = \varnothing$. In this case the conclusion of Theorem A is trivial. Lemma 2, of course, remains true even if $A \cap M = \varnothing$ so, for each K_a, $T(A \cap K_a) = K_a \cup T(\varnothing)$. That this can occur is seen by letting S be the Cantor set, A be the void set and K_a be S.

The following sequence of equalities establish the theorem:

\[
T(A \cap K) = T(\cap \{A \cap K_a\}) = \cap \{T(A \cap K_a)\} = \cap \{K_a \cup T(\varnothing)\} = \cap \{K_a\} \cup T(\varnothing) = K \cup T(\varnothing).
\]

Theorem C is not true if the requirement that A be closed is dropped. Let S be the unit interval and let A be the sequence $\{1/n\}$. Then $T(A) = \{0\} \cup A$. Let $K = \{0\}$. Then $T(A \cap K) = T(\varnothing)$ which is void since S is a continuum. But $K \cup T(\varnothing)$ is not void.

Corollary 1. Let S be a continuum and W be a subcontinuum of S. $T(W)$ is a subcontinuum of S.

Proof. Suppose $T(W) = A \cup B$ separate. By Theorem C, $T(W \cap A) = A$ and $T(W \cap B) = B$ since $T(\varnothing) = \varnothing$ when S is a continuum. $W \cap A \neq \varnothing$ since $T(W \cap A) \neq \varnothing$ and, likewise $W \cap B \neq \varnothing$. Hence $W = (W \cap A) \cup (W \cap B)$ separate, contradicting the hypothesis and thus establishing the proposition.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 2. Let S be a continuum and let W_1 and W_2 be subcontinua of S. If $T(W_1 \cup W_2) \neq T(W_1) \cup T(W_2)$ then $T(W_1 \cup W_2)$ is a continuum.

Proof. Suppose $T(W_1 \cup W_2) = A \cup B$ separate. By Lemma 2, $T((W_1 \cup W_2) \cap A) = A$ and $T((W_1 \cup W_2) \cap B) = B$. Suppose $W_1 \subset A$. If $W_2 \subset A$ then $A = T((W_1 \cup W_2) \cap A) = T(W_1 \cup W_2)$, thus contradicting the supposition. Hence $W_2 \subset B$. But then $T(W_1) = A$ and $T(W_2) = B$. Thus $T(W_1 \cup W_2) = T(W_1) \cup T(W_2)$. Corollaries 1 and 2 are special cases of Theorem 8 of [1].

Corollary 3. Let S be a continuum and let A and B be closed subsets of S. If K is a component of $T(A \cup B)$ which lies in neither $T(A)$ nor $T(B)$, then, $K \cap A \neq \emptyset \neq K \cap B$.

Proof. Since S is a continuum, $T(\emptyset) = \emptyset$ and, by Theorem C, $T((A \cup B) \cap K) = K$. Since K lies in neither $T(A)$ nor $T(B)$, $(A \cup B) \cap K$ meets both A and B. Thus K meets both A and B.

Corollary 4. Let S be a continuum and let A and B be closed subsets of S. If $T(A \cup B) \neq T(A) \cup T(B)$ then there exists a subcontinuum $K \subset T(A \cup B)$ such that $K \cap A \neq \emptyset \neq K \cap B$.

Proof. Let K be the component of some point in $T(A \cup B) - (T(A) \cup T(B))$ and apply Corollary 3.

Bibliography

Michigan State University, East Lansing, Michigan 48823

University of Delaware, Newark, Delaware 19711