ONE-SIDED BOUNDARY BEHAVIOR FOR CERTAIN HARMONIC FUNCTIONS

T. K. BOEHME AND MAX L. WEISS

Abstract. Some results concerning the maximal ideal space of \(H^\infty \) of the disk are applied to harmonic functions. The methods yield a Lindelöf type theorem for harmonic functions and extend to bounded harmonic functions a criterion of Tanaka which is necessary and sufficient in order that the boundary value function be one-sided approximately continuous.

1. Introduction. We are concerned in this paper with connections between the one-sided behavior of an \(L^\infty \) function at a point of the unit circle, \(C = \{z: |z| = 1\} \), and the boundary behavior of the harmonic extension of the function into the unit disc, \(D = \{z: |z| < 1\} \). Our techniques consist mainly of combining certain concrete estimates for harmonic measures with some facts about the Banach algebra, \(H^\infty \), of bounded analytic functions on \(D \). We assume for this latter area that the reader is familiar with the contents of Chapter 10 of Hoffman's book, [3], and with [4] and [5].

The main focal point is the introduction of a class of homomorphisms in the maximal ideal space of \(H^\infty \) which we call the "barely tangential homomorphisms." These homomorphisms play a role for the one-sided boundary behavior of \(L^\infty \) functions similar to that played by the radial homomorphisms for two-sided behavior in [1].

§2 is mainly devoted to an intrinsic study of the barely tangential homomorphisms. In §3 we obtain a theorem (Theorem 3.1) characterizing one-sided approximate continuity from above of an \(L^\infty \) function in terms of the behavior of the function on the supports of the representing measures of upper barely tangential homomorphisms. Subsequently, we easily obtain a result of Tanaka [6, Theorem 5] characterizing one-sided approximate continuity. As a final result we prove a "Lindelöf-type theorem" for \(L^\infty \) functions.

2. Barely tangential homomorphisms. We first recall that the collection, \(H^\infty \), of bounded analytic functions on \(D \) forms a function algebra with pointwise operations and the supremum norm. Its maximal ideal space, \(\mathbb{D} \), is a compactification of \(D \), [3]. Every homomorphism in \(\mathbb{D} \) can be approached by a universal net in \(D \) or by one...
in any dense subset of D. One can also represent H^∞ as a subalgebra of the Banach algebra, L^∞, of all bounded measurable functions on C. We rely on the references for a complete description of these connections. We remark here that for any L^∞ function f on C we will continue to denote as "f" any of the standard representations of f on D, \mathcal{D}, or C.

For simplicity we restrict our attention to the fiber, \mathcal{D}_1, above 1, i.e., those homomorphisms which are approached by nets tending to 1. From here on out we will simply assume phrases such as, "at 1." The collection, \mathcal{S}, of such homomorphisms which are approached within a Stolz angle are called the Stolz homomorphisms. In [5] the w^*-closure, $\mathcal{S}^* = \mathcal{L}$, of the Stolz homomorphisms is called the Lindelöf homomorphisms.

Definition 2.1. Let \mathcal{S} and \mathcal{L} be the Stolz and Lindelöf homomorphisms, respectively. Then, the collection, $\mathcal{B} = \mathcal{L} - \mathcal{S}$, is called the barely tangential homomorphisms. Those points, \mathcal{B}^+ [\mathcal{B}^-], of \mathcal{B} which are approached by nets tending to 1 tangentially from above [below] are termed the upper [lower] barely tangential homomorphisms.

Our first result shows a relationship between \mathcal{B} and \mathcal{L} which we shall use once in §3. We recall that for any function algebra, A, on a compact Hausdorff space X, each point $h \in X$ has a representing measure, μ_h, spread on the Silov boundary of A.

Lemma 2.2. Let A denote the restriction algebra of H^∞ to the Lindelöf homomorphisms, \mathcal{L}. Then, the Silov boundary of A is contained in the barely tangential homomorphisms, \mathcal{B}. If h is a Stolz homomorphism, then for any representing measure μ_h we have $\mu_h(\mathcal{B}^+) > 0$ and $\mu_h(\mathcal{B}^-) > 0$. In particular, if $f \in H^\infty$, then f has radial limit α if and only if f is constantly α on \mathcal{B}^+ (or on \mathcal{B}^-).

Proof. We show that no Stolz homomorphism is contained in the Silov boundary. Let $h \in \mathcal{S}$. Since by [5, §3] \mathcal{S} is open in \mathcal{D}_1 and since \mathcal{B} is compact there is a neighborhood N of h such that $N \subseteq \mathcal{S}$ and $N \cap \mathcal{B} = \emptyset$. Now, suppose $f \in H^\infty$ and f peaks on N, i.e., $|f(h_1)| = \|f\|_\mathcal{S}$ for some $h_1 \in N$. Choose some Gleason part, P, of \mathcal{D} which contains such a point in N. Using the results of [5, especially §6] we see that $P \subseteq \mathcal{S}$ and $P \cap \mathcal{B} \neq \emptyset$. Since the restriction of f to P is analytic and achieves its maximum modulus on P it is constant. Thus f peaks at some point of $P \cap \mathcal{B}$. Consequently, we have shown that f peaks outside N. Therefore, h cannot be in the Silov boundary and the latter is contained in \mathcal{B}.

Next, let $h \in \mathcal{S}$ and let μ_h be a representing measure. Let ν be the harmonic measure of $C^+ = \{e^{i\theta} : 0 \leq \theta \leq \pi\}$. Let ν be a harmonic con-
jugate and let \(f = \exp(u - iv) \). Then \(|f| = e\) on \(\Omega^+ \), \(|f| = 1\) on \(\Omega^-\) and \(1 < |f| < e\) on \(\mathcal{S} \). If \(\mu_h(\Omega^+) = 0\), then we would have \(|f(h)| \leq 1\) which is impossible. Thus \(\mu_h(\Omega^+) > 0\), and similarly \(\mu_h(\Omega^-) > 0\).

Finally, suppose \(f \in H^\infty\). If \(f \) has radial limit \(\alpha \), then \(f \) has Stolz limit \(\alpha \) and thus \(f = \alpha \) on \(\mathcal{S} \). Consequently, by continuity \(f = \alpha \) on \(\Omega^+ \) (or \(\Omega^-\)). Conversely, suppose \(f = \alpha \) on \(\Omega^+ \) (or \(\Omega^-\)). Let \(\mu_h \) be a Jensen measure for \(h \in \mathcal{S} \). Then,

\[
\log |f(h)| - \alpha | \leq \int_{\Omega^+ \cup \Omega^-} \log |f - \alpha| \, d\mu_h.
\]

Since \(\mu_h(\Omega^+) > 0\) and \(f - \alpha = 0 \) on \(\Omega^+\), the integral above equals \(-\infty \) and so \(f(h) = \alpha \). Thus, \(f = \alpha \) on \(\mathcal{S} \) and \(a \) fortiori \(f \) tends to \(\alpha \) radially.

In order to avoid exactly similar cases we now concentrate entirely on the upper barely tangential homomorphisms.

We next define a cluster set which will allow us to state more concretely Theorem 3.3 in \$3\$. Each Stolz angle approach can be written as \(\theta = c(1 - r) \) and as \(c \) increases the approach tends more and more toward an upper tangential approach. Given \(d \leq c \) we denote by \(S_{d,c} \) the collection of all homomorphisms in \(\mathcal{D}_1 \) which are approached by nets corresponding to all Stolz angle approaches, \(a \), such that \(d \leq a \leq c \). Given \(f \in L^\infty \) define \(S_{d,c}(f, 1) \) as the collection of all cluster values of \(f(re^{i\theta}) \) as \(re^{i\theta} \rightarrow 1 \) and \(d \leq \lim \inf \theta/(1 - r) \leq \lim \sup \theta/(1 - r) \leq c \). It is not hard to see that we then have \(S_{d,c}(f, 1) = f[S_{d,c}] \). Now, define \(B^+(f, 1) \), the upper barely tangential cluster set of \(f \) at \(1 \) by

\[
B^+(f, 1) = \bigcap_{d > 0} \left[\bigcup_{c > 0} S_{d,c}(f, 1) \right].
\]

Lemma 2.3. Let \(f \in L^\infty \). Then, \(B^+(f, 1) = f[\Omega^+] \).

Proof. Suppose \(h_0 \in \Omega^+ \). Then, there is a net \(h_\alpha \in \mathcal{S} \) such that \(h_\alpha \rightarrow h_0 \). Clearly, for each \(d \geq 0 \), \(h_\alpha \) is eventually in \(\bigcup_{c \geq 0} S_{d,c} \). Thus, \(h_0 \in \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} S_{d,c} \right]^{-} \). On the other hand suppose \(h_0 \in \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} S_{d,c} \right]^{-} \). Then, for each \(d \geq 0 \), \(h_0 \in \bigcup_{c \geq 0} S_{d,c} \). Since \(\bigcup_{c \geq 0} S_{d,c}^{-} = \Omega^+ \) for each \(d \), \(h_0 \in \Omega^+ \). Therefore,

\[
\Omega^+ = \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} S_{d,c} \right]^{-}.
\]

Since the intersection is over a nested system of compact sets and since \(f \) is continuous on \(\mathcal{D} \) we have

\[
f[\Omega^+] = \bigcap_{d \geq 0} \left[\bigcup_{c \geq 0} f[S_{d,c}] \right]^{-} = B^+(f, 1).
\]
Given a measurable subset, M, of the circle, C, we let u_M denote the harmonic measure of C,

$$u_M(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_M(e^{i\phi}) \frac{1 - r^2}{1 - 2r \cos(\theta - \phi) + r^2} d\phi,$$

where χ_M is the characteristic function of M. If M is a subset of the upper portion of the unit circle, $C^+ = \{ e^{i\theta} : 0 \leq \theta \leq \pi \}$, we let

$$d(M) = \lim \inf_{\theta \to 0^+} \frac{1}{\theta} \int_0^\theta \chi_M(e^{i\phi}) d\phi, \quad D(M) = \lim \sup_{\theta \to 0^+} \frac{1}{\theta} \int_0^\theta \chi_M(e^{i\phi}) d\phi$$

denote the lower and upper densities of M at 1 from above.

Our basic results rely heavily on the following estimates for harmonic measures.

Lemma 2.4. Let M be a measurable subset of C^+. If $d(M) = D(M)$, then for every $h \in \mathbb{S}^+$, $u_M(h) = d(M)$.

Lemma 2.5. Let M be a measurable subset of C^+. Then, there exists an $h \in \mathbb{S}^+$ with

$$u_M(h) \geq \frac{2}{\pi} \tan^{-1} \frac{D(M)}{2\sqrt{1 - D(M)}}.$$

Proof of 2.4. Let $\epsilon > 0$ and choose $0 < \theta_0 < \pi/2$ so that, for $0 \leq \theta \leq \theta_0$, $d(M) - \epsilon < \frac{1}{\theta} \int_0^\theta \chi_M(e^{i\phi}) d\phi \leq d(M) + \epsilon$.

Since the harmonic measure of $M \cap [\theta_0, \pi]$ tends to zero as $\varepsilon \to 1$ we have, as $\varepsilon \to 1$,

$$u_M(re^{i\theta}) = o(1) + \frac{1}{2\pi} \int_0^{\theta_0} P_r(\theta - \phi) \chi_M(e^{i\phi}) d\phi,$$

where $P_r(t)$ is the Poisson kernel. Integrating by parts we have

$$\frac{1}{2\pi} \int_0^{\theta_0} P_r(\theta - t) \chi_M(e^{i\phi}) dt = \frac{P_r(\theta - \theta_0)}{2\pi} \int_0^{\theta_0} \chi_M(e^{i\phi}) ds + \frac{1}{2\pi} \int_0^{\theta_0} P'_r(\theta - t) \int_0^t \chi_M(e^{i\phi}) ds dt.$$

Thus, as $\varepsilon \to 1$,

$$u_M(re^{i\theta}) = o(1) + \frac{1}{2\pi} \int_0^{\theta_0} P'_r(\theta - t) \int_0^t \chi_M(e^{i\phi}) ds dt.$$
For \(0 \leq t \leq \theta < \pi/2\), \(P_t^\prime (\theta - t) \leq 0\) so
\[
(d(M) + \epsilon)tP_t^\prime (\theta - t) \leq P_t^\prime (\theta - t) \int_0^t \chi_M(e^{is})ds \leq (d(M) - \epsilon)tP_t^\prime (\theta - t);
\]
while, for \(\theta \leq t \leq \theta_0\), \(P_t^\prime (\theta - t) \geq 0\) so
\[
(d(M) - \epsilon)tP_t^\prime (\theta - t) \leq P_t^\prime (\theta - t) \int_0^t \chi_M(e^{is})ds \leq (d(M) + \epsilon)tP_t^\prime (\theta - t).
\]
Therefore,
\[
o(1) + \frac{d(M) + \epsilon}{2\pi} \int_0^\theta tP_t^\prime (\theta - t)dt + \frac{d(M) - \epsilon}{2\pi} \int_\theta^{\theta_0} tP_t^\prime (\theta - t)dt
\]
\[
\leq u_M(re^{i\theta})
\]
\[
\leq o(1) + \frac{d(M) - \epsilon}{2\pi} \int_0^\theta tP_t^\prime (\theta - t)dt + \frac{d(M) + \epsilon}{2\pi} \int_\theta^{\theta_0} tP_t^\prime (\theta - t)dt.
\]
Now,
\[
\int_0^\theta tP_t^\prime (\theta - t)dt = \frac{-(1+r)\theta}{1-r} + 2 \tan^{-1}\left\{\frac{1+r}{1-r} \tan \frac{\theta}{2}\right\},
\]
\[
\int_\theta^{\theta_0} tP_t^\prime (\theta - t)dt = o(1) + \frac{(1+r)\theta}{1-r} + 2 \tan^{-1}\left\{\frac{1+r}{1-r} \tan \frac{\theta_0 - \theta}{2}\right\},
\]
so that if \(re^{i\theta} \to 1\) in such a way that \(\theta/(1-r) \to c \geq 0\), we have
\[
(d(M) + \epsilon) \left[\frac{-c}{\pi} + \frac{\tan^{-1} c}{\pi}\right] + (d(M) - \epsilon) \left[\frac{c}{\pi} + \frac{1}{2}\right]
\]
\[
\leq \lim \inf u_M(re^{i\theta}) \leq \lim \sup u_M(re^{i\theta})
\]
\[
\leq (d(M) - \epsilon) \left[\frac{-c}{\pi} + \frac{\tan^{-1} c}{\pi}\right] + (d(M) + \epsilon) \left[\frac{c}{\pi} + \frac{1}{2}\right] .
\]
Since this is true for every \(\epsilon > 0\), we have as \(re^{i\theta} \to 1\), \(\theta/(1-r) \to c \geq 0\),
\[
d(M) \left[\frac{1}{2} + \frac{\tan^{-1} c}{\pi}\right]
\]
\[
\leq \lim \inf u_M(re^{i\theta}) \leq \lim \sup u_M(re^{i\theta}) \leq d(M) \left[\frac{1}{2} + \frac{\tan^{-1} c}{\pi}\right] .
\]
Thus, as \(re^{i\theta} \to 1\), \(\theta/(1-r) \to c \geq 0\),
Thus, for any homomorphism, h_c, in $\mathcal{S}_{c,e}$ we have

$$u_M(h_c) = d(M) \left[\frac{1}{2} + \frac{\tan^{-1} c}{\pi} \right].$$

If $h \in \mathfrak{g}^+$, it is the limit of homomorphisms h_c for which $c \to \infty$. Thus, because u_M is continuous we have, letting $c \to \infty$, $u_M(h) = d(M)$, as claimed.

Proof of 2.5. Let $D = D(M)$, let $\epsilon > 0$, and pick $\theta_n \to 0$ such that

$$\frac{1}{2\theta_n} \int_0^{2\pi} \chi_M(e^{it}) dt \geq D - \epsilon.$$

Then,

$$u_M(r e^{i\theta_n}) \geq \int_0^{2\pi} P_r(\theta_n - t) \chi_M(e^{it}) dt$$

$$\geq 2 \int_0^{(D-\epsilon)\theta_n} P_r(\theta_n - t) dt = 2 \int_{(1-D+\epsilon)\theta_n}^{\theta_n} P_r(t) dt$$

$$= \frac{2}{\pi} \tan^{-1} \left(\frac{1 + r}{1 - r} \left(\frac{\theta_n}{2} - \tan \frac{(1 - D + \epsilon)\theta_n}{2} \right) \right).$$

Let τ_n be determined by $\theta_n = c(1 - \tau_n)$. Then, the limit as $\theta_n \to 0$ of the numerator of the argument of \tan^{-1} in the last expression is $c(D - \epsilon)$, while that of the denominator is $1 + c^2(1 - D + \epsilon)$. Hence,

$$\limsup_{\theta_n \to 0} u_M(r e^{i\theta_n}) \geq \frac{2}{\pi} \tan^{-1} \left\{ \frac{c(D - \epsilon)}{1 + c^2(1 - D + \epsilon)} \right\}.$$

This being true for every $\epsilon > 0$, we have

$$\limsup_{\theta_n \to 0} u_M(r e^{i\theta_n}) \geq \frac{2}{\pi} \tan^{-1} \left\{ \frac{cD}{1 + c^2(1 - D)} \right\}.$$

In particular, if we choose $c = (1 - D)^{-1/2}$,

$$\limsup_{\theta_n \to 0} u_M(r e^{i\theta_n}) \geq \frac{2}{\pi} \tan^{-1} \left\{ \frac{D}{2\sqrt{(1 - D)}} \right\}, \quad r e^{i\theta} \to 1, \quad \theta = c(1 - r).$$
This quantity is therefore a lower bound for \(u_M(h) \) for some \(h \in \mathcal{B}_c^+ \).

Therefore, by Lemma 2.2 it is also a lower bound for \(u_M(h) \) for some \(h \in \mathcal{B} \). Since \(u_M = 0 \) on \(\mathcal{B}^- \), it follows that for some homomorphism \(h \) in \(\mathcal{B}^+ \),

\[
u_M(h) \geq \frac{2}{\pi} \tan^{-1}\left\{ \frac{D}{2\sqrt{1-D}} \right\}
\]

as was to be proved.

If \(M \) is a measurable subset of \(C \), we let \(\tilde{M} = \{ h \in \mathcal{D}_1 : \chi_M(h) = 1 \} \).

We recall that the range of \(f \in L^\infty \) on \(\tilde{M} \) is precisely the collection of essential cluster values of \(f(e^{i\theta}) \) as \(e^{i\theta} \to 1 \) through \(M \). We also recall the result from [1] that for each \(h \in \mathcal{D} \), \(\mu_h(\tilde{M}) = u_M(h) \).

With these preliminaries we may now prove:

Corollary 2.6. Let \(M \) be a measurable subset of \(C^+ \). Then, \(d(M) = 1 \) if and only if \(\mu_h(\tilde{M}) = 1 \) for every \(h \in \mathcal{B}^+ \).

Proof. If \(d(M) = 1 \), we have from Lemma 2.4 that \(u_M(h) = 1 \). From the above remark it is immediate that \(\mu_h(\tilde{M}) = 1 \). On the other hand suppose \(d(M) < 1 \). Then, \(D(\sim M) > 0 \) and so by Lemma 2.5 there is an \(h \in \mathcal{B}^+ \) with

\[
u_{\sim M}(h) \geq \frac{2}{\pi} \tan^{-1}\left\{ \frac{D(\sim M)}{2\sqrt{1-D(\sim M)}} \right\} > 0.
\]

Since \(u_{\sim M} + u_M = 1 \), \(u_M(h) < 1 \) so \(\mu_h(\tilde{M}) < 1 \) for some \(h \in \mathcal{B}^+ \).

3. **Applications.** It is now an easy matter to obtain several results connecting the one-sided behavior of an \(L^\infty \) function on \(C \) at 1 with its boundary behavior at 1 from inside \(D \).

A function \(f \) on \(C \) is approximately continuous from above at 1 with value \(\alpha \) if for every \(\epsilon > 0 \), the density \(d(\{ e^{i\theta} : |f(e^{i\theta}) - \alpha| \leq \epsilon, 0 \leq \theta \leq \pi \}) \) equals one. The main theorem upon which the applications are based is

Theorem 3.1. Let \(f \in L^\infty \). Then \(f \) is approximately continuous from above at 1 with value \(\alpha \) if and only if \(f \) is identically \(\alpha \) on the support of the representing measure of each upper barely tangential homomorphism.

Proof. For each \(\epsilon > 0 \) let \(M_\epsilon = \{ e^{i\theta} : |f(e^{i\theta}) - \alpha| \leq \epsilon, 0 \leq \theta \leq \pi \} \). Then, \(f \) is approximately continuous from above at 1 with value \(\alpha \) if and only if \(d(M_\epsilon) = 1 \) for each \(\epsilon > 0 \) and only if, by Corollary 2.6, \(\mu_h(\tilde{M}_\epsilon) = 1 \) for every \(\epsilon > 0 \) and every \(h \in \mathcal{B}^+ \). This latter statement implies that for each \(h \in \mathcal{B}^+ \), the support of \(\mu_h \) is contained in \(\tilde{M}_\epsilon \) for
every \(\varepsilon \). But on \(\tilde{M}_e \), \(|f(h) - \alpha| \leq \varepsilon \). Thus for each \(h \in \mathbb{B}^+ \), \(f \) is identically \(\alpha \) on the support of \(\mu_h \). On the other hand suppose for each \(h \in \mathbb{B}^+ \) that \(f = \alpha \) on the support of \(\mu_h \). Then, since \(|f - \alpha| \geq \varepsilon \) on \((C - M)_e\) it must be that the support of \(\mu_h \) is entirely contained in \(\tilde{M}_e \), i.e., \(\mu_h(\tilde{M}_e) = 1 \). This completes the chain of implications and the theorem follows.

The next theorem is a generalization to \(L^\infty \) functions of a result of Tanaka [6, Theorem 5], for \(H^\infty \). By this time our proof is a considerable simplification of that given by Tanaka.

Theorem 3.2. Let \(f \in L^\infty \). Then, necessary and sufficient conditions for \(f \) to be approximately continuous from above at 1 with value \(\alpha \) are

(i) \(f(h) = \alpha \) for all \(h \in \mathbb{B}^+ \).

(ii) The set, \(\{ e^\# : |f(e^\#)| \leq |\alpha| + \varepsilon \} \), has density 1 at 1 from above for every \(\varepsilon > 0 \).

Note. In Tanaka's theorem condition (i) was the statement that \(f \) tends to \(\alpha \) radially. From Lemma 2.2 we see that this is equivalent to our (i) for \(H^\infty \) functions.

Proof. First suppose \(f \) is approximately continuous from above at 1 with value \(\alpha \). By Theorem 3.1, \(f = \alpha \) on the support of the representing measure for each \(h \in \mathbb{B}^+ \). Immediately, \(f = \alpha \) on \(\mathbb{B}^+ \). Condition (ii) is necessary because

\[
\{ e^\# : |f(e^\#) - \alpha| \leq \varepsilon \} \subset \{ e^\# : |f(e^\#)| \leq |\alpha| + \varepsilon \}.
\]

Next, suppose the conditions (i) and (ii) are satisfied. Let \(N_\varepsilon = \{ e^\# : |f(e^\#)| \leq |\alpha| + \varepsilon \} \). By Corollary 2.6 and condition (ii), \(N_\varepsilon \) contains the support of the representing measure of each upper barely tangential homomorphism for every \(\varepsilon > 0 \). Thus, for every \(\varepsilon > 0 \) we have \(|f| \leq |\alpha| + \varepsilon \) on each such support. Thus, \(|f| \leq |\alpha| \) on each such support. By condition (i) if \(h \in \mathbb{B}^+ \), then \(f(h) = \alpha \). But, \(f(h) \) is the integral average of values not exceeding \(\alpha \). Therefore, \(f \) must be identically \(\alpha \) on the support of \(\mu_h \). By Theorem 3.1, again, \(f \) is approximately continuous from above at 1 with value \(\alpha \).

That condition (i) is necessary is a Lindelöf-type theorem for \(L^\infty \). Using Lemma 2.3 we state this theorem more concretely. It should be noted that because of Lemma 2.2 this theorem generalizes the usual Lindelöf theorem for \(H^\infty \): If \(f \in H^\infty \) and is approximately continuous from above at 1 with value \(\alpha \), then \(f \) tends to \(\alpha \) radially.

Theorem 3.3. Let \(f \in L^\infty \). If \(f \) is approximately continuous from above at 1 with value \(\alpha \), then the upper barely tangential cluster set of \(f \) at 1 consists of the single point \(\alpha \).
References

University of California, Santa Barbara, California 93106