METRIZABILITY OF LOCALLY COMPACT VECTOR SPACES

SETH WARNER

Abstract. By use of the theory of characters and the Pontryagin-van Kampen theorem, it is shown that if E is a locally compact vector space over a discrete division ring K of characteristic zero and if $\dim_K E < 2^m$, where m is the cardinality of K, then E is metrizable.

The problem of determining whether a locally compact vector space over a discrete division ring is metrizable arises in the study of finite-dimensional locally compact vector spaces, because we have a fairly concrete picture of those that are metrizable: If E is a finite-dimensional, metrizable, indiscrete locally compact vector space over a discrete field K and if \mathfrak{o} is the smallest open subspace of E, then the topological additive group \mathfrak{o} admits the structure of finite-dimensional topological vector space over the locally compact field F, where F is either the real field \mathbb{R}, the field \mathbb{Q}_q of q-adic numbers, or the field $\mathbb{Z}_p((X))$ of power series over the field \mathbb{Z}_p of integers modulo p, under a scalar multiplication satisfying $\alpha \cdot (\lambda x) = \lambda (\alpha \cdot x)$ for all $x \in E$, $\lambda \in K$, $\alpha \in F$; moreover, if E is a topological algebra, then \mathfrak{o} is an ideal and $\alpha \cdot (xy) = (\alpha \cdot x)y$, $\alpha \cdot (yx) = y(\alpha \cdot x)$ for all $\alpha \in F$, $x \in \mathfrak{o}$, $y \in A$; finally, K is algebraically isomorphic to a subfield of finite codegree of a finite extension of F [4, Theorems 3 and 5]. Here we shall consider the special case of this problem where the scalar field has characteristic zero.

First, we need a lower bound on the dimension of nonzero compact vector spaces. Let K be a division ring, equipped with the discrete topology. We denote by $K^\hat{}$ the (compact) character group of the discrete additive group K, made into a right topological vector space over the field $\mathbb{Z}_p((X))$ of power series over the field \mathbb{Z}_p of integers modulo p, under a scalar multiplication satisfying $\alpha \cdot (\lambda x) = \lambda (\alpha \cdot x)$ for all $x \in E$, $\lambda \in K$, $\alpha \in F$; moreover, if E is a topological algebra, then \mathfrak{o} is an ideal and $\alpha \cdot (xy) = (\alpha \cdot x)y$, $\alpha \cdot (yx) = y(\alpha \cdot x)$ for all $\alpha \in F$, $x \in \mathfrak{o}$, $y \in A$; finally, K is algebraically isomorphic to a subfield of finite codegree of a finite extension of F [4, Theorems 3 and 5]. Here we shall consider the special case of this problem where the scalar field has characteristic zero.

First, we need a lower bound on the dimension of nonzero compact vector spaces. Let K be a division ring, equipped with the discrete topology. We denote by $K^\hat{}$ the (compact) character group of the discrete additive group K, made into a right topological vector space over K by defining $u \cdot \lambda : x \mapsto u(\lambda x)$ for all $u \in K^\hat{}$, $\lambda \in K$, $x \in K$ [3, Theorem 1].

Theorem 1. If K is an infinite division ring of cardinality m, then $\dim_K K^\hat{} = 2^m$.

Proof. Case 1. The characteristic of K is zero. Then for some cardinal number n the additive group of K is isomorphic to \mathbb{Q}^n, the
direct sum of \(n \) copies of the additive group \(Q \) of rationals, where
\(n = m \) if \(m > \aleph_0 \) and where \(1 \leq n \leq \aleph_0 \) if \(m = \aleph_0 \). Hence \(K^\sim \) is topologically
isomorphic to \((Q^\sim)^n\), the cartesian product of \(n \) copies of \(Q^\sim \) [2, (23.21), p. 364], and card \((Q^\sim)^n\) = \(c \) [2, (25.4), p. 404]. If \(m > \aleph_0 \), then
\(\text{card}(K^\sim) = c^n = 2^m > m \), so \(\dim_K K^\sim = 2^m \). If \(m = \aleph_0 \), then card \((Q^\sim)^n\) = \(c^n = c > m \), whence again \(\dim_K K^\sim = 2^m \).

Case 2. The characteristic of \(K \) is a prime \(p \). Then the additive
group of \(K \) is isomorphic to \(\mathbb{Z}_p^m \), so \(K^\sim \) is topologically isomorphic to
\((\mathbb{Z}_p)^m \). Hence card \((K^\sim)^n\) = \(p^m = 2^m > m \), so \(\dim_K K^\sim = 2^m \).

As a consequence of Theorem 1, we note that if \(K \) is uncountable, then \(K^\sim \) is a nonmetrizable compact \(K \)-vector space of dimension \(2^m \) [3, Theorem 8].

Theorem 2. Let \(K \) be a discrete division ring of characteristic zero. If \(E \) is a locally compact, totally disconnected \(K \)-vector space, then \(E \) is metrizable.

Proof. Let \(Q \) be the prime field of \(K \). By [2, (7.7), p. 62], \(E \) contains a compact open subgroup \(V \). Let \(F = \bigcap \{ \alpha V : \alpha \in Q^* \} \). Then \(F \) is a compact vector space over \(Q \) and hence is connected [3, Theorem 9]. Thus \(F = (0) \). Hence, as \(V \) is compact, for any neighborhood \(W \) of zero there exist \(\alpha_1, \ldots, \alpha_n \in Q^* \) such that \(W \supseteq \alpha_1 V \cap \ldots \cap \alpha_n V \). Therefore \(\{ \alpha_1 V \cap \ldots \cap \alpha_n V : \alpha_1, \ldots, \alpha_n \in Q^* \} \) is a fundamental system of neighborhoods of zero in \(E \); in particular, \(E \) is metrizable.

Theorem 3. Let \(K \) be a discrete division ring of characteristic zero, and let \(m = \text{card}(K) \). If \(E \) is a locally compact \(K \)-vector space and if \(\dim_K E < 2^m \), then \(E \) is metrizable.

Proof. Let \(C \) be the connected component of zero. By Theorem 2, \(E/C \) is metrizable. By [2, (e), p. 47], it therefore suffices to show that \(C \) is metrizable. Hence we may assume that \(E \) is connected. By the theorem of Pontryagin and van Kampen [2, (9.14), p. 95], the topological additive group \(E \) is the topological direct sum of \(\mathbb{R}^n \) and \(H \), where \(H \) is a compact subgroup. Let \(u \) be the (continuous) projection of \(E \) on \(\mathbb{R}^n \) along \(H \). If \(h \in H \), then the closed additive subgroup \((Zh)^- \) generated by \(h \) is compact as it is contained in \(H \); if \(\lambda \in K \), then \((Zh)^- = \lambda(Zh)^- \), a compact subgroup, whence \(u((Zh)^-) = (0) \) as \(\mathbb{R}^n \) contains no nonzero compact additive subgroups, and therefore \(\lambda h \in (Z\lambda h)^- \subseteq H \). Hence \(H \) is a vector subspace of \(E \). By Theorem 1, [3, Theorem 6], and our hypothesis, \(H = (0) \). Hence \(E = \mathbb{R}^n \) and thus is metrizable.

If \(K \) is countable, we may improve Theorem 3:

Theorem 4. Assume the Continuum Hypothesis. If \(K \) is a countable, discrete division ring of characteristic zero and if \(E \) is a locally compact
K-vector space such that \(\dim_K E \leq c \), then \(E \) is metrizable.

Proof. As in the proof of Theorem 3, we may assume that \(E \) is the topological direct sum of \(R^n \) and a compact subspace \(H \). By [3, Theorem 6], \(H \) is topologically isomorphic to the compact \(K \)-vector space \((K^\wedge)^n \), the cartesian product of \(n \) copies of \(K^\wedge \), for some cardinal number \(n \). If \(n > \aleph_0 \), then \(\text{card}(K^\wedge)^n = c^n > c \), so \(\dim_K E \geq \dim_K H > c \), a contradiction. Hence \(n \leq \aleph_0 \), so \(H \) is metrizable as \(K^\wedge \) is [3, Theorem 8]. Thus \(E \) is metrizable.

It is an open question whether similar theorems hold for locally compact vector spaces over fields of prime characteristic. At any rate, we may take care of the one-dimensional case:

Theorem 5. If \(E \) is an indiscrete, one-dimensional locally compact vector space over a discrete field \(K \), then there is a topology on \(K \) making \(K \) into an indiscrete locally compact field and \(E \) a topological vector space over \(K \), so topologized; in particular, \(E \) is metrizable.

Proof. The proof is similar to that of [3, Theorem 10]. We topologize \(K \) so that \(f: \lambda \mapsto \lambda a \) is a homeomorphism, where \(a \) is a nonzero vector. Then \(K \) is locally compact; \((\lambda, \mu) \mapsto \lambda + \mu \) is continuous, since each of the maps \((\lambda, \mu) \mapsto (\lambda a, \mu a) \mapsto \lambda a + \mu a = (\lambda + \mu)a \mapsto \lambda + \mu \) is; and for each \(\alpha \in \mathbb{K} \), \(\lambda \mapsto \alpha \lambda \) is continuous, since each of the maps \(\lambda \mapsto \lambda a \mapsto \alpha \lambda a \mapsto \alpha \lambda \) is. With the induced topology, the multiplicative group \(K^* \) satisfies the hypotheses of Ellis's theorem [1, Theorem 2], so \(K^* \) is a locally compact group. In particular, the mapping \((\lambda, \mu) \mapsto \lambda \mu \) is continuous at \((1, 1) \); it is therefore also continuous at \((0,0) \), for if \(V \) is a neighborhood of zero, there exists a neighborhood \(U \) of zero such that \((1 + U)(1 + U) \subseteq 1 + V \), whence \(UV \subseteq U + U + UU = (1 + U)(1 + U) - 1 \subseteq V \). Therefore \(K \) is an indiscrete locally compact field, so its topology is given by an absolute value; consequently, \(E \) is also metrizable. Clearly \(E \) is a topological vector space over \(K \), as each of the maps \((\lambda, \mu a) \mapsto (\lambda, \mu) \mapsto \lambda \mu \mapsto \lambda \mu a \) is continuous.

References

Duke University, Durham, North Carolina 27706