ZERO DIVISORS AND NILPOTENT ELEMENTS
IN POWER SERIES RINGS

DAVID E. FIELDS

ABSTRACT. It is well known that a polynomial $f(X)$ over a commutative ring R with identity is nilpotent if and only if each coefficient of $f(X)$ is nilpotent; and that $f(X)$ is a zero divisor in $R[X]$ if and only if $f(X)$ is annihilated by a nonzero element of R. This paper considers the problem of determining when a power series $g(X)$ over R is either nilpotent or a zero divisor in $R[[X]]$. If R is Noetherian, then $g(X)$ is nilpotent if and only if each coefficient of $g(X)$ is nilpotent; and $g(X)$ is a zero divisor in $R[[X]]$ if and only if $g(X)$ is annihilated by a nonzero element of R. If R has positive characteristic, then $g(X)$ is nilpotent if and only if each coefficient of $g(X)$ is nilpotent and there is an upper bound on the orders of nilpotency of the coefficients of $g(X)$. Examples illustrate, however, that in general $g(X)$ need not be nilpotent if there is an upper bound on the orders of nilpotency of the coefficients of $g(X)$, and that $g(X)$ may be a zero divisor in $R[[X]]$ while $g(X)$ has a unit coefficient.

1. Introduction. It is well known that a polynomial $f(X)$ over a commutative ring R with identity is nilpotent if and only if each coefficient of $f(X)$ is nilpotent. In [1], McCoy establishes that a polynomial $f(X)$ is a zero divisor in $R[X]$ if and only if there is a nonzero element r of R with $rf(X) = 0$. In this paper, we consider the problem of determining when a power series $g(X)$ over R is either nilpotent or a zero divisor in $R[[X]]$. We prove (Corollary 1) that if R is Noetherian, then $g(X)$ is nilpotent if and only if each coefficient of $g(X)$ is nilpotent. And if R is Noetherian, then $g(X)$ is a zero divisor in $R[[X]]$ if and only if $g(X)$ is annihilated by some nonzero element of R (Theorem 5). We establish (Theorem 1) that if R has positive characteristic, then $g(X)$ is nilpotent if and only if each coefficient of $g(X)$ is nilpotent and there is an upper bound on the orders of nilpotency of the coefficients of $g(X)$. We show by means of examples, however, that, in general, $g(X)$ need not be nilpotent if there is an upper bound on the orders of nilpotency of the coefficients.
of \(g(X) \), and that \(g(X) \) may be a zero divisor while \(g(X) \) has a unit coefficient.

Throughout this paper, \(R \) denotes a commutative ring with identity; \(\omega \) is the set of natural numbers; \(\omega_0 \) is the set of nonnegative integers; \(Z \) is the set of integers; and \(Q \) is the set of rational numbers. If \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \), we denote by \(A_f \) the ideal of \(R \) generated by the coefficients of \(f(X) : A_f = \{ f_0, f_1, f_2, \ldots \} R \). If \(A \) is an ideal of \(R \), we let \(A[[X]] = \{ f(X) = \sum_{i=0}^{\infty} f_i X^i : f_i \in A \text{ for each } i \in \omega_0 \} \) and we define \(A \cdot R[[X]] \) to be the ideal of \(R[[X]] \) which is generated by \(A \). Then \(A \cdot R[[X]] = \{ f(X) : A_i \subseteq B \} \) for some finitely generated ideal \(B \) of \(R \) with \(B \subseteq A \). It is clear that \(A \cdot R[[X]] \subseteq A[[X]] \); equality holds if and only if each countably generated ideal of \(R \) contained in \(A \) is contained in a finitely generated ideal contained in \(A \). In particular, if \(V \) is a valuation ring containing an ideal \(A \) which is countably generated but not finitely generated, then \(A \cdot V[[X]] \) is finitely generated. Finally, we note that if \(A \) is an ideal of \(R \), then \(R[[X]] / A[[X]] \cong (R/A)[[X]] \); hence \(A[[X]] \) is a prime ideal of \(R[[X]] \) if and only if \(A \) is a prime ideal of \(R \).

2. Nilpotent elements. Let \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \) and let \(n \in \omega_0 \); we define \(f^{(n)} = \sum_{i=0}^{n} f_i X^i \). Then \(f^{(n)} \) is zero or a polynomial of degree at most \(n \).

Lemma 1. Let \(R \) be a commutative ring with identity having characteristic a positive prime \(p \), and let \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \). The following conditions are equivalent:

(a) \(f(X) \) is nilpotent.
(b) There is a natural number \(m \) such that \((f_i)^m = 0 \) for each \(i \in \omega_0 \).
(c) There is a natural number \(m \) such that \((f^{(k)})^m = 0 \) for each \(k \in \omega_0 \).

Proof. (a) \(\leftrightarrow \) (b): This follows immediately from the fact that for each natural number \(n \), \((f(X))^n = \sum_{i=0}^{\infty} (f_i)^n X^{np} \).

(b) \(\leftrightarrow \) (c): This is clear since for each natural number \(n \) and for each nonnegative integer \(k \), \((f^{(k)})^n = \sum_{i=0}^{\infty} (f_i)^{np} X^{nk} \).

Theorem 1. Let \(R \) be a commutative ring with identity having positive characteristic \(n = p_1 p_2 \cdots p_t \) and let \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \). The following conditions are equivalent:

(a) \(f(X) \) is nilpotent.
(b) There is a natural number \(m \) such that \((f_i)^m = 0 \) for each \(i \in \omega_0 \).
(c) There is a natural number \(m \) such that \((f^{(k)})^m = 0 \) for each \(k \in \omega_0 \).

Proof. We let \(\phi_i : R[[X]] \to R[[X]] / p_i^1 R[[X]] \) be the natural homomorphism for \(1 \leq i \leq t \). We note that for \(1 \leq j \leq t \), \(R/p_j R \) has characteristic \(p_j \).
(a)\(\rightarrow\)(b): If \(f(X)\) is nilpotent, then for \(1 \leq j \leq t\), \(\phi_j(f(X))\) is nilpotent in \(R[[X]]/p_jR[[X]]\cong (R/p_jR)[[X]]\). By Lemma 1, there is, for \(1 \leq j \leq t\), a natural number \(m_j\) satisfying: For \(i \in \omega_0\), \(0 = (\phi_j(f_i))^{m_j} = \phi_j(f_i(m_j))\); that is, \((f_i)^{m_j} \in p_jR\) for each \(i \in \omega_0\).

Let \(m = m_1e_1 + m_2e_2 + \cdots + m te_t\). Then for each \(i \in \omega_0\),

\[
(f_i)^m = (f_i^{m_1})^{e_1}(f_i^{m_2})^{e_2} \cdots (f_i^{m_t})^{e_t} \in (p_1R)^{e_1}(p_2R)^{e_2} \cdots (p_tR)^{e_t} = (0).
\]

Hence (b) holds.

(b)\(\rightarrow\)(a): We assume that there is a natural number \(m\) satisfying:
\((f_i)^m = 0\) for each \(i \in \omega_0\). Then for each \(j\), \(1 \leq j \leq t\), \(\phi_j((f_i)^m) = (\phi_j(f_i))^{m_j} = 0\) for each \(i \in \omega_0\). By Lemma 1, there is for each \(j\), \(1 \leq j \leq t\), a natural number \(m_j\) satisfying

\[
[\phi_j(f(X))]^{m_j} = \phi_j((f(X))^{m_j}) = 0; \quad \text{that is, } (f(X))^{m_j} \in p_jR[[X]].
\]

Let \(m = m_1e_1 + m_2e_2 + \cdots + m te_t\); then

\[
(f(X))^m = [(f(X))^{m_1}]^{e_1}[(f(X))^{m_2}]^{e_2} \cdots [(f(X))^{m_t}]^{e_t}
\cdot (p_1R[[X]])^{e_1}(p_2R[[X]])^{e_2} \cdots (p_tR[[X]])^{e_t} = (0).
\]

Hence \(f(X)\) is nilpotent.

The proof that (b)\(\leftrightarrow\)(c) is analogous to the proof that (a)\(\leftrightarrow\)(b); hence it will be omitted.

Theorem 2. Let \(R\) be a commutative ring with identity and let \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]]\). We consider the following conditions:

(a) The ideal \(A_j\) is nilpotent.

(b) There is a natural number \(m\) which satisfies: \([A_j^{(0)}]^m = 0\) for each \(k \in \omega_0\).

(c) There is a natural number \(m\) which satisfies: \([f^{(k)}]^m = 0\) for each \(k \in \omega_0\).

(d) There is a natural number \(m\) which satisfies: \((f_i)^m = 0\) for each \(i \in \omega_0\).

(e) There is a natural number \(m\) which satisfies: \([f^{(k)}]^m \in (X^{k+1}) \cdot R[[X]]\) for each \(k \in \omega_0\).

(f) \((f(X))\) is nilpotent.

We have the implications (a)\(\leftrightarrow\)(b)\(\rightarrow\)(c)\(\rightarrow\)(e)\(\leftrightarrow\)(f) and (c)\(\rightarrow\)(d).

Proof.

(a)\(\rightarrow\)(b): For each \(k \in \omega_0\), \(A_j^{(0)} \subseteq A_j\); hence if \((A_j)^m = 0\), then \([A_j^{(0)}]^m = 0\) for each \(k \in \omega_0\).

(b)\(\rightarrow\)(a): Let \(m\) be a natural number which satisfies: \([A_j^{(0)}]^m = 0\) for each \(k \in \omega_0\). Let \(a \in (A_j)^m\); then for some \(i \in \omega_0\), \(a \in [A_j^{(i)}]^m = 0\). Thus \((A_j)^m = 0\).

(b)\(\rightarrow\)(c): Obvious.
(c)→(d): Let \(m \) be a natural number which satisfies: \([f^{(k)}]_{m} = 0\) for each \(k \in \omega_0 \). Then for each \(i \in \omega_0 \), \((f_i)^{m} = ([f^{(i)}]_{m})_{i} = 0\).

(c)→(e): Clear.

(e)→(f): We first observe that if \(i \leq k \), then for each \(m \in \omega \),

\[
([f(X)]^m)_i = \sum_{r_1 r_2 \cdots r_s = i}^{e_1 + e_2 + \cdots + e_s = m} \prod_{r_1 r_2 \cdots r_s = i} (n_1 n_2 \cdots n_s)
\]

where each \(n_1 n_2 \cdots n_s \in \omega \), implying that \(([f(X)]^m)_i = ([f^{(k)}]_{m})_i \). For if \(r_1 e_1 + r_2 e_2 + \cdots + r_s e_s = i \) with each \(r_i \in \omega_0 \) and each \(e_i \in \omega \), then \(r_s \leq i \leq k \). Thus only the coefficients \(f_0, f_1, \cdots, f_s \), where \(t \leq k \), occur in the calculation of \(([f(X)]^m)_i \), whereby we obtain the above equality.

Assuming (e), let \(m \) be a natural number which satisfies: \([f^{(k)}]_{m} \in (X^{k+1})R[[X]]\) for each \(k \in \omega_0 \). Then for each \(j \in \omega_0 \), \((f(X))^{m})_{j} = ([f^{(j)}]_{m})_{j} = 0\) since \([f^{(j)}]_{m} \in (X^{j+1})R[[X]]\). Hence \([f(X)]^m = 0\) and \(f(X) \) is nilpotent.

(f)→(e): We assume that \([f(X)]^m = 0 \); then whenever \(i \leq k \), 0 = \([f(X)]^m)_i = ([f^{(k)}]_{m})_i \). Thus \([f^{(k)}]_{m} \in (X^{k+1})R[[X]]\) for each \(k \in \omega_0 \) and (e) holds.

Corollary 1. Let \(R \) be a commutative ring with identity and let
\(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \). If \(A_f \) is a finitely generated ideal of \(R \), then the following conditions are equivalent:

(a) The ideal \(A_f \) is nilpotent.

(c) There is a natural number \(m \) which satisfies: \([f^{(k)}]_{m} = 0\) for each \(k \in \omega_0 \).

(d) There is a natural number \(m \) which satisfies: \((f_i)^{m} = 0\) for each \(i \in \omega_0 \).

(f) \(f(X) \) is nilpotent.

(g) Each coefficient of \(f(X) \) is nilpotent.

Proof. In Theorem 2, we established the implications (c)→(d) and (a)→(c)→(f). That (d)→(g) is clear. Hence it suffices to prove that (f)→(g) and that (g)→(a).

(g)→(a): If (g) holds, then each element of \(A_f \) is nilpotent. Since \(A_f \) is finitely generated, \(A_f \) is nilpotent.

(f)→(g): Let \(\{P_\alpha\} \) be the collection of prime ideals of \(R \) and let \(N \) be the ideal of nilpotent elements of \(R \); then \(N = \cap P_\alpha \). For each \(\alpha \), \(P_\alpha[[X]] \) is a prime ideal of \(R[[X]] \). Since \(f(X) \) is nilpotent, \(f(X) \in P_\alpha[[X]] \) for each \(\alpha \). Hence \(f(X) \in \cap P_\alpha[[X]] = (\cap P_\alpha)[[X]] = N[[X]] \); that is, each coefficient of \(f(X) \) is nilpotent.
We now give examples which show that in Theorem 2, (c)\leftrightarrow(a) and (d)\leftrightarrow(f).

Example 1. Let $S = \mathbb{Z}/(p)$ where p is a positive prime; let $\{ X_i \}_{i \in \omega_0}$ be a countable collection of indeterminates over S; and let

$$R = S[X_0, X_1, \ldots, X_n, \ldots]/\{ X_0^p, X_1^p, \ldots, X_n^p, \ldots \}.$$

Let $f_i = X_i$ and let $f(X) = \sum_{i=0}^n f_i X^i \in R[[X]]$. Then for each $k \in \omega_0$, $[f^{(k)}]_p = 0$. But for each natural number n, $f_0 f_1 \cdots f_{n-1} \in (A_f)^n$ and $f_0 f_1 \cdots f_{n-1} \neq 0$. Thus A_f is not nilpotent. We conclude that (c)$\not\leftrightarrow$(a).

Example 2. Let $n \in \omega$, $n \geq 2$, and let

$$R = Q[X_0, X_1, \ldots, X_n, \ldots]/\{ X_0^n, X_1^n, \ldots, X_n^n, \ldots \}.$$

Let $f_i = X_i$ and let $f(X) = \sum_{i=0}^n f_i X^i \in R[[X]]$. It is clear that $(f_i)^n = 0$ for each $i \in \omega_0$; hence $f(X)$ satisfies (d).

We assume that $f(X)$ is nilpotent: $[f(X)]^m = 0$. Then $f_0^m = ([f(X)]^m)_0 = 0$ so $m \geq n$. Let k_1 be the smallest integer l for which f_0^n does not occur in every summand used in computing $([f(X)]^m)_l$. Then $0 = ([f(X)]^m)_{k_1} = a_0^{m-1} f_1^{m-(n-1)}$ plus other terms, each having f_0^n as a factor, where $a \in \omega$. Hence $0 = ([f(X)]^m)_{k_1} = a_0^{m-1} f_1^{m-(n-1)}$, implying that $m - (n-1) \geq n$.

Let k_2 be the smallest integer l for which some summand used in computing $([f(X)]^m)_l$ has neither f_0^n nor f_1^n as a factor. Then $0 = ([f(X)]^m)_{k_2} = b f_0^{m-1} f_1^{n-1} f_2^{m-2(n-1)}$ plus other terms, each having either f_0^n or f_1^n as a factor, where $b \in \omega$. Hence $0 = ([f(X)]^m)_{k_2} = b f_0^{m-1} f_1^{n-1} f_2^{m-2(n-1)}$, implying that $m - 2(n-1) \geq n$.

We can prove inductively by this process that for each $k \in \omega$, $m - k(n-1) \geq n$; that is, $m \geq n + k(n-1)$. This contradicts our assumption that $m \in \omega$, showing that $f(X)$ is not nilpotent. Hence (d)$\not\leftrightarrow$(f).

3. **Zero divisors.**

Lemma 2. Let R be a commutative ring with identity and let $f(X) = \sum_{i=0}^n f_i X^i \in R[[X]]$. If for some natural number t, f_i is regular in R while f_t is nilpotent for $0 \leq i \leq t-1$, then $f(X)$ is regular in $R[[X]]$.

Proof. We let $g(X) = \sum_{i=0}^{t-1} f_i X^i$ and $h(X) = \sum_{i=t}^n f_i X^i$; then $f(X) = g(X) + h(X)$. (We let $g(X) = 0$ if $t = 0$.) Since $g(X) = 0$ or $g(X)$
is a polynomial of which each coefficient is nilpotent, \(g(X) \) is nilpotent.

Let \(T \) denote the total quotient ring of \(R \) and let \(S = T[[X]] \) where \(M = \{ X^i \}_{i=1}^{\infty} \). Then in \(S \), we can write \(h(X) = X' h'(X) \) where \(h'(X) = \sum_{i=0}^{\infty} f_{i+1} X^i \); thus \(h(X) \) and \(h'(X) \) are associates in \(S \). Since \(f_i = (h'(X))_0 \) is regular in \(R \), \(f_i \) is a unit of \(T \), implying that \(h'(X) \) is a unit in \(T[[X]] \), hence also in \(S \). Since \(h(X) \) and \(h'(X) \) are associates in \(S \), \(h(X) \) is a unit in \(S \). Hence in \(S \), \(f(X) = g(X) + h(X) \) where \(g(X) \) is nilpotent and \(h(X) \) is a unit, implying that \(f(X) \) is a unit, hence is regular, in \(S \). Thus \(f(X) \) is regular in \(R[[X]] \).

Theorem 3. Let \(R \) be a commutative ring with identity in which each zero divisor is nilpotent, and let \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \). If some \(f_i \) is regular in \(R \), then \(f(X) \) is regular in \(R[[X]] \).

Proof. This is an immediate consequence of Lemma 2, letting \(t \) be the smallest integer \(k \) for which \(f_k \) is regular in \(R \).

Corollary 2. Let \(R \) be a commutative ring with identity in which each zero divisor is nilpotent. If the ideal \(N \) of nilpotent elements of \(R \) is nilpotent, then in \(R[[X]] \) each zero divisor is nilpotent.

Proof. Let \(f(X) = \sum_{i=0}^{\infty} f_i X^i \in R[[X]] \) and assume that \(f(X) \) is not nilpotent. Then \(A_f \) is not nilpotent so \(A_f \subseteq N \); that is, not every coefficient of \(f(X) \) is nilpotent. By assumption, \(f(X) \) has a regular coefficient. By Theorem 3, \(f(X) \) is regular in \(R[[X]] \).

We observe that Corollary 2 can be restated as follows:

Corollary 3. Let \(R \) be a commutative ring with identity in which \((0) \) is \(N \)-primary. If \(N \) is nilpotent, then \((0) \) is a primary ideal of \(R[[X]] \).

We immediately have the following:

Corollary 4. Let \(R \) be a commutative ring with identity and let \(Q \) be a \(P \)-primary ideal of \(R \). If \(Q \supseteq P^k \) for some \(k \in \omega \), then \(Q[[X]] \) is a \(P[[X]] \)-primary ideal of \(R[[X]] \).

Proof. Since \(R[[X]]/Q[[X]] \cong (R/Q)[[X]] \), it follows from Corollary 3 that \(Q[[X]] \) is a primary ideal of \(R[[X]] \). Also, \(P^k \subseteq Q \) so that \((P[[X]])^k \subseteq P^k [[X]] \subseteq Q[[X]] \); hence \(P[[X]] = \sqrt{P[[X]]} \subseteq \sqrt{Q[[X]]} \). And clearly \(\sqrt{Q[[X]]} \subseteq P[[X]] \). Hence \(\sqrt{Q[[X]]} = P[[X]] \) and \(Q[[X]] \) is \(P[[X]] \)-primary.

Theorem 4. Let \(R \) be a Noetherian ring with identity in which \((0) = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) is a shortest primary representation, with \(\sqrt{Q_i} = P_i \). Then in \(R[[X]] \), \((0) = Q_1[[X]] \cap Q_2[[X]] \cap \cdots \cap Q_n[[X]] \)
\[\cap \cdots \cap Q_n[[X]] \text{ is a shortest primary representation with } \sqrt{Q_i[[X]]} = P_i[[X]]. \]

Proof. \(Q_i[[X]] \cap \cdots \cap Q_n[[X]] = (Q_i \cap \cdots \cap Q_n)[[X]] = (0). \) Further, Corollary 4 asserts that each \(Q_i[[X]] \) is \(P_i[[X]] \)-primary. It is straightforward to verify that this primary representation of \((0)\) in \(R[[X]] \) is, in fact, irredundant.

Theorem 5. Let \(R \) be a Noetherian ring with identity in which \((0) = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) is a shortest primary representation of \((0)\) with \(\sqrt{Q_i} = P_i, 1 \leq i \leq n. \) Then for \(f(X) = \sum_{i=0}^{\infty} f_iX^i \in R[[X]] \), these conditions are equivalent:

(a) \(f(X) \) is a zero divisor in \(R[[X]] \).

(b) \(f(X) \in P_i[[X]] \) for some \(i, 1 \leq i \leq n. \)

(c) There is a nonzero element \(r \) of \(R \) which satisfies \(rf(X) = 0. \)

Proof. (a)\(\rightarrow\) (b): This is an immediate consequence of Theorem 4 and \([3, \text{Corollary 3, p. 214}]. \)

(b)\(\rightarrow\) (c): Assuming that \(f(X) \in P_i[[X]] \), this implies that \(A_f \subseteq P_i \).

Thus \((0) : A_f \neq (0) \) by \([3, \text{Corollary 1, p. 214}]. \) Let \(r \in (0) : A_f, r \neq 0; \) then clearly \(r \in R \) and \(r \neq 0 \) while \(rf(X) = 0. \)

(c)\(\rightarrow\)(a): Obvious.

We conclude with an example which shows that Theorem 5 fails when \(R \) is not Noetherian.

Example 3.\(^2\) Let \(S \) be a commutative ring with identity; let \(\{Y, X_0, X_1, X_2, \ldots, X_t, \ldots\} \) be a set of indeterminates over \(S; \) and let

\[R = S[Y, \{X_i\}_{i=0}^\infty] / (X_0 Y, \{X_i - X_{i+1} Y\}_{i=0}^\infty). \]

Let \(y = Y \) and let \(f(X) = y - X \). Then \(f(X) \) has a unit coefficient, so certainly \(rf(X) \neq 0 \) for each nonzero element \(r \) of \(R \). However, letting \(x_i = X_i \) and \(g(X) = \sum_{i=0}^\infty x_i X^i \), we see that \(f(X) \cdot g(X) = 0 \) while \(g(X) \neq 0. \)

References

Stetson University, DeLand, Florida 32720

Florida State University, Tallahassee, Florida 32306

\(^{2}\) Example 3 was pointed out to the author by Professor Gilmer.