A GENERAL DIFFERENTIAL EQUATION FOR CLASSICAL POLYNOMIALS

B. NATH

Abstract. Agrawal and Khanna [1] have derived the two partial
differential equations satisfied by the polynomial set \(B_n(x, y) \). In
this paper we shall present a generalization of these results.

Introduction. The purpose of the present paper is to derive three
partial differential equations satisfied by the polynomial set
\(W_{n;\gamma,\gamma'}^{\lambda,\lambda_1,\gamma_1} (u, v, x, y) \) which is the generalization of as many as forty
classical polynomials such as Legendre polynomials, Hermite poly-
nomials, Jacobi polynomials, Gegenbauer polynomials, Sister Celine
polynomials, Bedient polynomials, generalized Bessel polynomials
etc. The polynomial set \(W_{n;\gamma,\gamma'}^{\lambda,\lambda_1,\gamma_1} (u, v, x, y) \) has been defined by
means of the generating relation

\[
W_{n;\gamma,\gamma'}^{\lambda,\lambda_1,\gamma_1} (u, v, x, y) = \sum_{n=0}^{\infty} W_{n;\gamma,\gamma'}^{\lambda,\lambda_1,\gamma_1} (u, v, x, y) t^n,
\]

valid under the conditions given in [2]. Several other results for the
polynomial set \(W_{n;\gamma,\gamma'}^{\lambda,\lambda_1,\gamma_1} (u, v, x, y) \) have also been given in [2].

Substituting \(u^m \) for \(u \) and putting \(\gamma = 0, \gamma' = 0, \lambda = 0, \lambda' = 0 \) in
(1.1), we obtain [1, p. 646 (1.1)].

Differential equations for \(W_{n;\gamma,\gamma'}^{\lambda,\lambda_1,\gamma_1} (u, v, x, y) \). Expanding the left
hand side of (1.1) in ascending power of \(t \), using the equality
\[
\sum_{k=0}^{\infty} \sum_{k'=0}^{\infty} \psi(k, n) = \sum_{n=0}^{\infty} \sum_{k=0}^{[n/m]} \psi(k, n - mk)
\]
and equating coefficients of \(t^n \) on both sides, we have

\[
W_n = \sum_{z=0}^{n} \sum_{k=0}^{[n-z/m]} \sum_{\rho=0}^{[z/m]} \frac{[(a_p)_k]}{(a_{p'})_{s-m'_p}} \frac{(\gamma k + \lambda)_{n-s-mk}}{(s-m'_p)_{(n-s-mk)}} (\rho_{(s-m'_p)(n-s-mk)_{(s-m'_p)(k)}}(\rho_{k})) \times (\gamma' s - \gamma' m'_p + \lambda')_s{m_x}_{s-m'_p}{N'_y}_{s-m'_p}{N_u}_k{A v}_\rho,
\]

Received by the editors May 21, 1970.

AMS 1969 subject classifications. Primary 3579; Secondary 3340, 3345.

Key words and phrases. General differential equation, classical polynomial, partial
differential equations, generating relation, Legendre polynomials, Hermite poly-
nomials, Laguerre polynomials, Jacobi polynomials, Gegenbauer polynomials, Sister
Celine polynomials, Bedient polynomials, generalized Bessel polynomials.

Copyright © 1971, American Mathematical Society
where \(W_n \) stands for \(W^\lambda,\lambda';m,m'(u, v, x, y) \).

Let us denote
\[
\theta_1 = x \frac{\partial}{\partial x}, \quad \theta_2 = y \frac{\partial}{\partial y}, \quad \theta_3 = u \frac{\partial}{\partial u} \quad \text{and} \quad \theta_4 = v \frac{\partial}{\partial v}.
\]

Let us consider
\[
\theta_2\{\theta_2 + (b'_D) - 1\} (\gamma'\theta_2 + \lambda' - \gamma'), \gamma' \{\gamma\theta_3 + \theta_1 + \lambda\} W_n.
\]

We have
\[
\theta_2\{\theta_2 + (b'_D) - 1\} (\gamma'\theta_2 + \lambda' - \gamma'), \gamma' \{\gamma\theta_3 + \theta_1 + \lambda\} W_n
\]
\[
= \sum_{s=1}^n \sum_{k=0}^{[n-s/m]} \sum_{\rho=0}^{[s/m']} \left\{ (s-m') \rho \right\} \left\{ s-m' \rho + (b'_D) \right\} (\gamma' \{ s-m' \rho \} + \lambda' - \gamma'), \gamma' \left\{ n+s-mk \right\} (\gamma + \gamma k + n-s-mk)
\]
\[
= \sum_{s=0}^{n-1} \sum_{k=0}^{[n-s-1/m]} \sum_{\rho=0}^{[s+1/m']} \left\{ (a_{p'}) + s-m' \rho \right\} (\gamma' \{ s-m' \ rho \} + \lambda')_{p+1}, \gamma' \left\{ n+s-mk \right\} (\gamma k + \lambda)_{n-s-mk}
\]
\[
\times \left\{ ((a_{p'}) + s-m' \rho) \gamma' \{ s-m' \ rho \} + \lambda' \right\}_{p+1}, \gamma' \left\{ n+s-mk \right\} (\gamma + \gamma k + n-s-mk)
\]
\[
= \{ N'y/mx \} \theta_1 \{ \theta_2 + (a_{p'}) \} (\gamma'\theta_2 + \lambda' + \theta_4)' \gamma'.
\]

Therefore,
\[
\begin{aligned}
mx \left\{ \theta_2 \prod_{i=1}^{q'} (\theta_2 + b'_i - 1)(\gamma'\theta_2 + \lambda' - \gamma'), \gamma' (\gamma\theta_3 + \theta_1 + \lambda) \right\} \\
- N'y \theta_1 \prod_{i=1}^{q'} (\theta_2 + a_i') (\gamma'\theta_2 + \lambda' + \theta_4) \right\} W_n
\end{aligned}
\]
\[
= 0,
\]

which is one of the differential equations for the polynomial set \(W^\lambda,\lambda';m,m'(u, v, x, y) \).

Similarly, it can be also shown that the other partial differential equations for \(W^\lambda,\lambda';m,m'(u, v, x, y) \) are given by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[
\left[(N'\gamma)^m \theta_d \prod_{i=1}^{p'} (1 - a'_i - \theta_2 - m') \gamma (1 - \gamma' \theta_2 - \gamma'm') \gamma_m \right. \\
\left. \times (\theta_4 - \lambda' - \gamma' \theta_2 - \gamma'm') \gamma_m' - (-1)^{p'm'} \right.
\]
\[
\times (Av)(\gamma \theta_2 + \lambda' + \theta_4) (1 + \theta_2 - m') \gamma \prod_{i=1}^{q'} (b'_i + \theta_2 - m') \gamma_m' \right] W_n
\]
\[
= 0.
\]

and
\[
\left[(mx)^m \theta_d \prod_{i=1}^{q} (\theta_3 + b_i - 1) (\lambda + \gamma \theta_3 - \gamma)(\lambda + \theta_1 + \gamma \theta_3 - \gamma) \right.
\]
\[
- N u (1 + \theta_1 - m) \gamma \prod_{i=1}^{p} (\theta_3 + a_i) \right] W_n
\]
\[
= 0.
\]

The equations (2.2), (2.3) and (2.4) are the partial differential equations satisfied by the polynomial set \(W_{n'} \gamma_m \).

ACKNOWLEDGEMENT. I wish to express my grateful thanks to Dr. (Mrs.) P. Srivastava of Banaras Hindu University for her kind help and guidance during the preparation of this paper.

REFERENCES

BANARAS HINDU UNIVERSITY, VARANASI 5, INDIA