Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The orthomodular identity and metric completeness of the coordinatizing division ring


Author: Ronald P. Morash
Journal: Proc. Amer. Math. Soc. 27 (1971), 446-448
MSC: Primary 06.40; Secondary 81.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0272689-3
Erratum: Proc. Amer. Math. Soc. 29 (1971), 627.
Erratum: Proc. Amer. Math. Soc. 29 (1971), 627.
MathSciNet review: 0272689
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be any division subring of the real quaternions $ H$. Let $ {l_2}(F)$ denote the linear space of all square summable sequences from $ F$ and let $ L$ denote the lattice of all ``$ \bot $-closed'' subspaces of $ {l_2}(F)$, where ``$ \bot $'' denotes the orthogonality relation derived from the $ H$-valued form $ (a,b) = \sum\nolimits_{i = 1}^\infty {{a_i}{{\overline b }_i}} $ where $ a,b \in {l_2}(F),a = ({a_i};i = 1,2, \cdots )$ and $ b = ({b_i};i = 1,2, \cdots )$. Then $ L$ is complete, orthocomplemented, $ M$-symmetric, irreducible, atomistic, and separable, but $ L$ is orthomodular if and only if $ F$ is either the reals, the complex numbers, or the quaternions.


References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638. MR 0227053 (37:2638)
  • [2] S. S. Holland, Jr., The current interest in orthomodular lattices, Trends in Lattice Theory, Van Nostrand, Princeton, N. J., 1969. MR 0272688 (42:7569)
  • [3] S. Maeda, Theory of symmetric lattices, University of Massachusetts, Amherst, Mass., 1968 (lecture notes--unpublished).
  • [4] M. D. MacLaren, Atomic orthocomplemented lattices, Pacific J. Math. 14 (1964), 597-612. MR 29 #1159. MR 0163860 (29:1159)
  • [5] -, Notes on axioms for quantum mechanics, Argonne National Lab. Report ANL 7065, July 1965.
  • [6] N. Zierler, Axioms for non-relativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151-1169. MR 25 #4385. MR 0140972 (25:4385)
  • [7] G. W. Mackey, Mathematical foundations of quantum mechanics: A lecture-note volume, Benjamin, New York, 1963. MR 27 #5501. MR 0155567 (27:5501)
  • [8] S. S. Holland, Jr., Partial solution to Mackey's problem about modular pairs and completeness, Canad. J. Math. 21 (1969), 1518-1525. MR 0253025 (40:6240)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06.40, 81.00

Retrieve articles in all journals with MSC: 06.40, 81.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0272689-3
Keywords: Orthomodular lattices, coordinatization
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society