A PRODUCT INTEGRAL REPRESENTATION
FOR AN EVOLUTION SYSTEM

J. V. HEROD

Abstract. This paper provides a product integral representation for a nonlinear evolution system. The representation is valid for expansive systems and provides an analysis in the nonexpansive case which is different from ones previously discovered.

In [7], D. Rutledge obtains a product integral representation for a nonexpansive, nonlinear semigroup. In [6], Neuberger gets such a representation for expansive semigroups by first considering nonexpansive evolution systems. This paper obtains a product integral representation for an expansive evolution system M. In this development, it is not required that $\lim_{h\to 0} h^{-1}[M(h,0) - 1]P$ exist. As a corollary to Theorem 3, a statement equivalent to the statement that M is nonexpansive is found.

Suppose that $\{G, +, | \cdot | \}$ is a complete, normed, Abelian group and that S is the set of real numbers. If f is a function from S to G and $a > b$, then denote the range of the restriction of f to $[b, a]$ by $f([b, a])$. Also, the statement that $\{s_p\}_0^n$ is a subdivision of $\{a, b\}$ means that s is a decreasing sequence with $s(0) = a$ and $s(n) = b$. The statement that t is a refinement of the subdivision s means that t is a subdivision of $\{a, b\}$ and that there is an increasing sequence u so that $s(p) = t(u(p))$ for $1 \leq p \leq n$. Finally, if $\{f_p\}_1^n$ is a sequence of functions from G to G and g is in G, then

$$\left[\prod_{p=1}^n f_p \right](g) = f_1(f_2(\cdots f_n(g))).$$

An evolution system on G is a function M with domain contained in $S \times S$ so that if $x \geq y$ then $M(x, y)$ is a function from G to G having the following properties:

1. if $x \geq y \geq z$ then $M(x, y)M(y, z) = M(x, z)$ and $M(x, x) = 1$, the identity function on G, and

2. if t is a number and P is in G then the function g given by $g(x) = M(x, t)P$, for all $x \geq t$, is continuous.

Presented to the Society, January 23, 1970 under the title A product integral representation for an expansive evolution system; received by the editors April 21, 1970.

AMS 1969 subject classifications. Primary 4750; Secondary 3495.

Keywords and phrases. Product integral, evolution system, semigroups of operators.
In order to obtain a product integral representation for the evolution system M, two additional conditions are used:

(3) there is an increasing, continuous function β and a subset D of G so that

(a) if P is in D and $x > y$ then $M(x, y)P$ is in D, and

(b) if P is in D, $\varepsilon > 0$, $a > b$, and Q is in $M([b, a], b)P$ then there is a positive number δ so that if R is in $M([b, a], b)P$, $|Q - R| < \delta$, and $a \geq x \geq y \geq b$, then

$$| [M(x, y) - 1]R - [M(x, y) - 1]Q | \leq \exp(\beta(x) - \beta(y)) - 1 \cdot \varepsilon,$$

and

(4) there is a nondecreasing, continuous function α so that if $x > y$ and $\exp(\alpha(x) - \alpha(y)) < 2$, then $2 - M(x, y)$ has range all of G and, if P and Q are in G then

$$| 2 - \exp(\alpha(x) - \alpha(y)) | \cdot | P - Q | \leq | [2 - M(x, y)]P - [2 - M(x, y)]Q |.$$

Remark. It follows from condition (4) that if $\exp(\alpha(x) - \alpha(y)) < 2$, then $[2 - M(x, y)]^{-1}$ has domain all of G, and if P and Q are in G then

$$| [2 - M(x, y)]^{-1}P - [2 - M(x, y)]^{-1}Q | \leq [2 - \exp(\alpha(x) - \alpha(y))]^{-1} | P - Q |.$$

In this paper, the following three theorems are proved.

Theorem 1. Suppose that P is in D, $a > b$, and M satisfies conditions (1)-(4). It follows that $M(a, b)P = \Pi [2 - M]^{-1}P$—in the sense that if $\varepsilon > 0$, then there is a subdivision s of $\{a, b\}$ so that if $\{t_p\}$ is a refinement of s then

$$| M(a, b)P - \Pi_{p=1}^{n} [2 - M(t_{p-1}, t_p)]^{-1}P | < \varepsilon.$$

Theorem 2. Suppose that M satisfies conditions (1)-(4), if $x > y$ then $M(x, y)$ is continuous from G to G, D is dense in G, $a > b$, and P is in G, it follows that $M(a, b)P = \Pi [2 - M]^{-1}P$.

Theorem 3. Suppose that G is a Banach space, M satisfies conditions (1)-(3). If $x > y$ then $M(x, y)$ is continuous from G to G, D is dense in G, and ρ is a continuous, real valued function which is of bounded variation on each interval. These are equivalent:

(a) If $x > y$ and P and Q are in G then

$$| M(x, y)P - M(x, y)Q | \leq \exp(\rho(x) - \rho(y)) \cdot | P - Q |.$$
(b) If \(x > y \) and \(\exp(\rho(x) - \rho(y)) < 2 \), then \(2 - M(x, y) \) has range all of \(G \) and, if \(P \) and \(Q \) are in \(G \), then
\[
[2 - \exp(\rho(x) - \rho(y))] \cdot |P - Q|
\leq |[2 - M(x, y)]P - [2 - M(x, y)]Q|.
\]

Indication of Proofs. The following inequality is important in what follows; it may be established after considering the polynomial \(P(z) = 1 - 2z^3 + z^4 \). It is labeled Lemma 1 for later reference.

Lemma 1. If \(x \) is a number and \(1 \leq x \leq (1 + \sqrt{5})/2 \) then \([2 - x]^{-1} \leq x^2 \).

In the definitions and lemmas which follow, suppose that \(M \) satisfies conditions (1)-(4), \(a > b \), and \(\epsilon > 0 \).

Definition. Define functions \(\delta \) and \(B \) as follows: if \(P \) is in \(D \) and \(a \leq z \leq b \) then \(\delta(z, P) \) is the largest number \(d \) not exceeding 1 so that if \(Q \) is in \(M([z, a], z) \), then
\[
|M(z, y) - 1|Q - |M(z, y) - 1|P < [\exp(\beta(x) - \beta(y)) - 1] \cdot \epsilon.
\]
Also, \(B(z, P) \) is the largest number \(u \) not exceeding \(a \) so that if \(u > v > z \) then \(|M(u, z)^{P} - P| < \delta(z, P) \).

Remark. Note that the existence of \(\delta \) follows from condition (3) and of \(B \) follows from condition (2).

Lemma 2. Suppose that \(P \) is in \(D \). If \(a \leq x \leq b \), \(\{t_{p}\}_{p}^{n} \) is a subdivision of \(\{B(x, P), x\} \), and \(j \) is an integer in \([1, n] \), then
\[
|M(t_{j-1}, t_{j}) - 1|M(t_{j}, t_{n})P - |M(t_{j-1}, t_{j}) - 1|P < [\exp(\beta(t_{j-1}) - \beta(t_{j})) - 1] \cdot \epsilon.
\]

Indication of Proof. If \(\{t_{p}\}_{p}^{n} \) is a subdivision of \(\{B(x, P), x\} \) and \(j \) is an integer in \([1, n] \) then \(x \leq t_{j} < B(x, P) \). Thus \(|M(t_{j}, x)^{P} - P| < \delta(x, P) \). Now, \(M(t_{j}, x)P \) is in \(M([x, a], x)P \), so if \(a \leq u \leq v \geq x \) then
\[
|M(u, v) - 1|M(t_{j}, x)P - |M(u, v) - 1|P < [\exp(\beta(u) - \beta(v)) - 1] \cdot \epsilon.
\]

Lemma 3. Suppose that \(P \) is in \(D \), \(\{t_{p}\}_{p}^{n} \) is an increasing sequence with values in \([b, a] \) and limit \(z \). There is a positive integer \(N \) so that if \(n > N \) then \(B(t_{n}, M(t_{n}, b)P) \geq z \).

Indication of Proof. Suppose that \(P \) is in \(D \) and \(t \) is an infinite increasing sequence with values in \([b, a] \) and limit \(z \). The fact that \(\{M(t_{p}, b)P\}_{p=0}^{n} \) converges in \(G \) and has limit \(M(z, b)P \) follows from
condition (2). Let Q be $M(z, b)P$. Since Q is in $M([b, a], b)P$, there is a number d so that $0<d<1$ and, if $|R - Q| < d$ and R is in $M([b, a], b)P$ and $a \geq x \geq y \geq b$, then

$$|M(x, y) - 1|Q - |M(x, y) - 1|R| \leq \exp(\beta(x) - \beta(y)) - 1 \cdot \epsilon/2.$$

Let w be so that if $z \geq u \geq w$ then $|Q - M(u, b)P| < \delta/4$. Let n be so that $t_n > w$. First, $\delta(t_n, M(t_n, b)P) \geq \delta/2$ because: suppose R is in $M([t_n, a], b)P$ and $|R - M(t_n, b)P| < \delta/2$. Then $|R - Q| < d$ so that if $a \geq x \geq y \geq b$ then

$$|M(x, y) - 1|M(t_n, b)P - |M(x, y) - 1|R| \leq \exp(\beta(x) - \beta(y)) - 1 \cdot \epsilon/2 + \epsilon/2.$$

Finally, $B(t_n, M(t_n, b)P) \geq z$ because: suppose that $t_n \leq v \leq z$. Then

$$|M(v, t_n)M(t_n, b)P - M(t_n, b)P| \leq |M(v, t_n)M(t_n, b)P - Q| + |Q - M(t_n, b)P| \leq \delta/4 + \delta/4 \leq \delta(t_n, M(t_n, b)P).$$

Lemma 4. Suppose that P is in D. There is a subdivision u of $\{a, b\}$ so that if $\{\tau_i\}^n_0$ is a refinement of u and p is an integer in $[1, n]$ then

$$|M(t_{\tau_i-1}, t_p)P - M(t_{\tau_i-1}, t_p) - 1|M(t_p, b)P| \leq \exp(\beta(t_{\tau_i-1}) - \beta(t_p)) - 1 \cdot 2\epsilon.$$

Indication of Proof. Suppose that P is in D. By the previous lemma, there is a subdivision $\{u_q\}_m^0$ of $\{a, b\}$ so that if q is an integer in $[1, m]$ then $u_q = B(u_q, M(u_q, b)P)$. Let $\{t_p\}_n^0$ be a refinement of u and p be an integer in $[1, n]$. Let q be an integer in $[1, m]$ so that $u_{q-1} \geq t_{p-1} > t_p \geq u_q$. Then $|M(t_{p-1}, b)P - M(u_q, b)P| < \delta(u_q, M(u_q, b)P)$ and $|M(t_p, b)P - M(u_q, b)P| < \delta(u_q, M(u_q, b)P)$. Hence, if $a \geq x \geq y \geq u_q$, then

$$|M(x, y) - 1|M(t_{p-1}, b)P - |M(x, y) - 1|M(t_p, b)P| \leq \exp(\beta(x) - \beta(y)) - 1 \cdot 2\epsilon.$$

Indication of Proof of Theorem 1. Suppose that P is in D. Let u be a subdivision of $\{a, b\}$ as indicated in Lemma 4, $\{s_p\}_n^0$ be a refinement of u so that if p is an integer in $[1, m]$ then $\exp(\alpha(s_{p-1}) - \alpha(s_p)) < (1 + \sqrt{5})/2$, and $\{t_p\}_n^0$ be a refinement of s. By Lemma 1, if p is an integer in $[1, n]$ and P and Q are in G, then

$$|2 - M(t_{p-1}, t_p)|^{-1}P - |2 - M(t_{p-1}, t_p)|^{-1}Q| \leq \exp(2\alpha(t_{p-1}) - \alpha(t_p)) \cdot |P - Q|.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[\prod_{p=1}^{n} \left[2 - M(t_{p-1}, t_p) \right]^{-1} P - M(a, b) P \]

\[= \sum_{j=1}^{n} \left\{ \prod_{p=1}^{n+1-j} \left[2 - M(t_{p-1}, t_p) \right]^{-1} M(t_{n+1-j}, t_n) b P \right. \]

\[- \prod_{p=1}^{n-j} \left[2 - M(t_{p-1}, t_p) \right]^{-1} M(t_{n-j}, t_n) b P \right\} \]

\[\leq \sum_{j=i}^{n} \exp(2[\alpha(a) - \alpha(t_{n+1-j})]) \]

\[\cdot \left| M(t_{n+1-j}, t_n) b P - [2 - M(t_{n-j}, t_{n+1-j})] M(t_{n-j}, t_n) b P \right| \]

\[= \sum_{j=1}^{n} \exp(2[\alpha(a) - \alpha(t_{n+1-j})]) \]

\[\cdot \left[M(t_{n-j}, t_{n+1-j}) - 1 \right] M(t_{n-j}, t_n) b P \]

\[- \left[M(t_{n-j}, t_{n+1-j}) - 1 \right] M(t_{n+1-j}, t_n) b P \]

\[\leq \sum_{j=1}^{n} \left[\exp(2[\alpha(a) - \alpha(t_{n+1-j})]) \cdot [\exp(\beta(t_{n-j}) - \beta(t_{n+1-j})) - 1] \cdot 2 \varepsilon \right. \]

\[\leq \exp(2[\alpha(a) - \alpha(b)]) \cdot [\exp(\beta(a) - \beta(b)) - 1] \cdot 2 \varepsilon. \]

To see this last inequality, one should note Lemma 2.2 of [4].

Indication of Proof of Theorem 2. Suppose that \(P \) and \(Q \) are in \(G \), \(a > b \), and \(\{t_p\}^n_1 \) is a subdivision of \(\{a, b\} \) so that, if \(p \) is an integer in \([1, n] \), then \([2 - M(t_{p-1}, t_p)]^{-1} \) has domain all of \(G \).

\[M(a, b) P - \prod_{p=1}^{n} \left[2 - M(t_{p-1}, t_p) \right]^{-1} P \leq M(a, b) P - M(a, b) Q \]

\[+ \prod_{p=1}^{n} \left[2 - M(t_{p-1}, t_p) \right]^{-1} Q - \prod_{p=1}^{n} \left[2 - M(t_{p-1}, t_p) \right]^{-1} P \]

\[+ \prod_{p=1}^{n} \left[2 - M(t_{p-1}, t_p) \right]^{-1} Q - M(a, b) Q \right]. \]

Thus, if \(D \) is dense in \(G \) and \(M(a, b) \) is continuous from \(G \) to \(G \), it follows from Lemma 1 that \(M(a, b) P = a \prod_{p=1}^{b} [2 - M]^{-1} P \).

Lemma 5. If \(\rho \) is a continuous function from \(S \) to \(S \) and is of bounded variation on each interval of \(S \), \(a > b \), and \(\varepsilon > 0 \), then there is a subdivision \(s \) of \(\{a, b\} \) so that \(\{t_p\}^n_0 \) is a refinement of \(s \) then
\[|\exp(\rho(a) - \rho(b)) - \prod_{p=1}^{n} [2 - \exp(\rho(t_{p-1}) - \rho(t_p))]^{-1} | < \epsilon. \]

Indication of Proof. Notice that if \(\rho \) is continuous and of bounded variation on each interval of \(S \), \(a > b \), and \(\{t_p\}_{0}^{n} \) is a subdivision of \(\{a, b\} \) so that, if \(p \) is an integer in \([1, n]\), then \(\exp(\rho(t_{p-1}) - \rho(t_p)) < 2 \) then

\[
\prod_{p=1}^{n} [2 - \exp(\rho(t_{p-1}) - \rho(t_p))]^{-1} \leq \prod_{p=1}^{n} \left[2 - \exp \left(\int_{t_p}^{t_{p-1}} |d\rho| \right) \right]^{-1}.
\]

With techniques similar to those used in the proof of Theorem 1, it can be shown that, if

\[
\exp \left(\int_{t_p}^{t_{p-1}} |d\rho| \right) < \frac{1 + \sqrt{5}}{2} \quad \text{for} \quad p = 1, 2, \ldots, n,
\]

then

\[
\left| \prod_{p=1}^{n} [2 - \exp(\rho(t_{p-1}) - \rho(t_p))]^{-1} - \exp(\rho(a) - \rho(b)) \right|
\leq \exp \left(3 \int_{a}^{b} |d\rho| \right) \cdot \sum_{j=1}^{n} \left| \exp(\rho(t_{n-j}) - \rho(t_{n+1-j})) - 1 \right|^2.
\]

The conclusion of the lemma follows.

Indication of Proof of Theorem 3. Suppose that \(G \) is a Banach space and that \(\rho \) is a function from \(S \) to \(S \) which is continuous and of bounded variation on each interval of \(S \). Suppose also that \(x > y \) and that \(M(x, y) \) is a function from \(G \) to \(G \) having the property that if \(P \) and \(Q \) are in \(G \) then \(|M(x, y)P - M(x, y)Q| \leq \exp(\rho(x) - \rho(y)) |P - Q| < 2|P - Q| \). As in Lemma 1 of [5], let \(X \) be in \(G \) and \(K(Z) \) be \(.5[X + M(x, y)Z] \) for each \(Z \) in \(G \). Then \(K \) is a contraction mapping and there is only one member \(Z \) of \(G \) so that \(2Z - M(x, y)Z = X \). Furthermore, if \(P \) and \(Q \) are in \(G \), then

\[
|Q - P| \leq .5 \left| 2 - M(x, y) \right| Q - \left[2 - M(x, y) \right] P
\]

\[
+ .5 \exp(\rho(x) - \rho(y)) \left| P - Q \right|.
\]

Consequently, in Theorem 3, statement (a) implies statement (b). Finally, with \(G \) and \(\rho \) as supposed above, if \(M \) satisfies conditions (1)–(3), \(D \) is dense in \(G \), statement (b) of Theorem 3 holds, and \(x > y \), then, by Theorem 2, \(M(x, y)P = \prod_{u} [2 - M]^{-1} P \) for each \(P \) in \(G \) and, by Lemma 5,
A PRODUCT INTEGRAL REPRESENTATION

\[z \prod^{x}[2 - M]^{-1} P - x \prod^{y}[2 - M]^{-1} Q \leq \exp(\rho(x) - \rho(y)) \, |P - Q| . \]

This completes the proof of Theorem 3.

Examples.

Example 1. Let \(G \) be a Banach space and \(T \) be a one-parameter semigroup of nonlinear transformations on \(G \). That is, \(T \) is a function from \([0, \infty)\) to the set of continuous transformations from \(G \) to \(G \) which satisfies

1. \(T(x)T(y) = T(x+y) \) if \(x, y \geq 0 \),
2. if \(P \) is in \(G \) and \(g_\rho(x) = T(x)P \) for all \(x \) in \([0, \infty)\) then \(g_\rho \) is continuous and \(\lim_{x \to 0^+} g_\rho(x) = P \),
3. \(|T(x)P - T(x)Q| \leq |P - Q| \) if \(x \geq 0 \) and \(P \) and \(Q \) are in \(G \), and
4. there is a dense subset \(D \) of \(G \) such that if \(P \) is in \(D \) then \(g_\rho \) is continuous with domain \([0, \infty) \). By Theorem 2, if \(P \) is in \(D \) and \(x > 0 \), then \(T(x)P = \prod^{x}[2 - T(-dI)]^{-1}P \). Compare [5] and Theorem 2 of [7].

Example 2. Let \(f \) be an increasing function from the real numbers onto the real numbers so that \(f' \) is continuous and nonincreasing. Suppose also that \(g \) is increasing and continuous, and that, for \(x > y \) and \(P \) a real number,

\[M(x, y)P = f(g(x) - g(y) + t \, |P|) . \]

\(M \) satisfies (1)–(4) but \(\lim_{h \to 0^+} h^{-1}[M(h, 0) - 1]P \) may not exist. Compare Example 2 of [8], Example 3.4 of [1], and Theorem A of [6].

Example 3. In case \(M \) satisfies conditions (1) and (2) and if \(P \) and \(Q \) are in \(G \) and \(x > y \), then

\[|M(x, y) - 1||P - [M(x, y) - 1]Q| \leq [\exp(\beta(x) - \beta(y)) - 1]|P - Q| , \]

then, according to [2] and [3], each value of \(M \) has range all of \(G \) and is invertible. This paper provides an alternate method for obtaining \(M(x, y)^{-1} \).

References

GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332