Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The canonical Schoenflies theorem


Author: David B. Gauld
Journal: Proc. Amer. Math. Soc. 27 (1971), 603-612
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1971-0279786-7
MathSciNet review: 0279786
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: M. Brown has shown that if $ f:{S^{n - 1}} \times I' \to {S^n}$, where $ I' = [ - 1,1]$, is an embedding, then the closure of either complementary domain of $ f({S^{n - 1}} \times 0)$ is homeomorphic to $ {B^n}$; in fact there is an embedding $ g : {B^n} \to {S^n}$ satisfying $ g\vert{S^{n - 1}} = f\vert{S^{n - 1}} \times 0$. This paper shows that the choice of embedding $ g$ can be made to be ``canonical,'' i.e. if $ f'$ is an embedding near $ f$ in the compact-open sense, then the embedding $ g'$ corresponding to $ f'$ is near $ g$.


References [Enhancements On Off] (What's this?)

  • [1] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b. MR 0117695 (22:8470b)
  • [2] W. Huebsch and M. Morse, The dependence of the Schoenflies extension on an accessory parameter (the topological case), Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1036-1037. MR 32 #439. MR 0182957 (32:439)
  • [3] J. M. Kister, Microboundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190-199. MR 31 #5216. MR 0180986 (31:5216)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0279786-7
Keywords: Embedding spheres in spheres, locally-flat embeddings, Schoenflies theorem
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society