KRONECKER FUNCTION RINGS AND FLAT $D[X]$-MODULES

J. T. ARNOLD AND J. W. BREWER

Abstract. Let D be an integral domain with identity. Gilmer has recently shown that in order that a v-domain D be a Prüfer v-multiplication ring, it is necessary and sufficient that D^* be a quotient ring of $D[X]$, where D^* is the Kronecker function ring of D with respect to the v-operation. In this paper the authors prove that in the above theorem it is possible to replace "a quotient ring of $D[X]^*$" with "a flat $D[X]$-module." Moreover, it is shown that D^* is the only Kronecker function ring of $D[X]$ which can ever be a flat $D[X]$-module.

In the sequel D will denote an integral domain with identity and K will denote its quotient field. Otherwise, our notation is essentially that of [1].

Let $I(D)$ denote the collection of all fractional ideals of D. The mapping $F \mapsto F_v$ of $I(D)$ into $I(D)$, where $F_v = (F^{-1})^{-1}$, is called the v-operation on D. The v-operation satisfies the properties of a *-operation, and if the v-operation is endlich arithmetisch brauchbar, then we call D a v-domain and we denote by D^* the Kronecker function ring of D with respect to the v-operation (for a detailed treatment of *-operations, Kronecker function rings and the v-operation, see [1, Chapters 26 and 28]). If the set of v-ideals of finite type is a group under v-multiplication, then D is said to be a Prüfer v-multiplication ring. Let D be a v-domain. Then in [2] Gilmer proves that D is a Prüfer v-multiplication ring if and only if D^* is a quotient ring of $D[X]$. Thus, in case D is a Prüfer v-multiplication ring, D^* is a flat $D[X]$-module. The converse is also true, but in order to prove it we require some preliminary results.

Lemma 1. Let D be an integral domain. If Q is a prime ideal of $D[X]$ such that $(D[X])_Q$ is a valuation ring and if $(Q \cap D)D[X] \subseteq Q$, then $Q \cap D = (0)$.

Presented to the Society, November 20, 1970 under the title Essential valuation overrings of $D[X]$; received by the editors May 18, 1970 and, in revised form, July 15, 1970.

AMS 1969 subject classifications. Primary 1393; Secondary 1398.

Key words and phrases. Kronecker function ring, flat module, essential valuation ring, Prüfer v-multiplication ring.

The authors are indebted to the referee for several helpful suggestions concerning the paper.

Copyright © 1971, American Mathematical Society
Proof. Since $D_{Q \cap D} = (D[X])_Q \cap K$, there is no loss of generality in assuming that D is a valuation ring and that $Q \cap D$ is its maximal ideal. Q is generated mod $(Q \cap D)D[X]$ by a monic polynomial f. If $y \in Q \cap D$, then since $(D[X])_Q$ is a valuation ring and since $f \in (Q \cap D)(D[X])_Q$, it follows that $y = fg/h$, where $g \in D[X]$ and $h \in D[X] - Q$. If $y \neq 0$, then f divides h in $K[X]$, whence f divides h in $D[X]$ by [1, 8.4].

The following result, due to Richman [3, Theorem 2], will be of use.

Lemma 2. Let D_1 be an overring of D—that is, $D \subseteq D_1 \subseteq K$. In order that D_1 be a flat D-module it is necessary and sufficient that $(D_1)_{M_1} = D_{M_1 \cap D}$ for each maximal ideal M_1 of D_1.

We are now able to sharpen the aforementioned result of Gilmer.

Theorem 3. Let D be a v-domain and let D^v be the Kronecker function ring of D with respect to the v-operation. The following conditions are equivalent:

1. D is a Prüfer v-multiplication ring.
2. D^v is a quotient ring of $D[X]$.
3. Each valuation overring of D^v is of the form $(D[X])_{p(X)}$ where D_p is a valuation overring of D.
4. D^v is a flat $D[X]$-module.

Proof. The equivalence of (1) and (2) is given in [2]. That (2) implies (3) is a direct consequence of Lemma 1 and that (3) implies (4) follows from Lemma 2. Therefore, we need only show that (4) implies (2). We claim that $D^v = (D[X])_S$, where $S = \{f \in D[X] | (A_f)_v = D \}$. (Here, A_f denotes the ideal of D generated by the coefficients of f.) Clearly, $D^v \supseteq (D[X])_S$. Let A be an ideal of $D[X]$ such that $AAD^v = D^v$. Then there exist $f_1, \ldots, f_n \in A$ such that $(f_1, \ldots, f_n)D^v = D^v$. Set $m = \max_{1 \leq i \leq n} \deg(f_i) + 1$ and put $f(X) = f_1 + f_2 X^m + \cdots + f_n X^{(n-1)m}$. Then by [1, 26.7], $(A_f)_v = D$ and hence $A \cap S \neq \emptyset$. Therefore, if M is a maximal ideal of $(D[X])_S$, then $MD^v \subseteq D^v$ and there exists a maximal ideal M' of D^v such that $M = M' \cap (D[X])_S$. The result follows from Lemma 2.

On the basis of Theorem 3, one is led to ask what Kronecker function rings are flat $D[X]$-modules. The answer is given by

Corollary 4. If D^v is a Kronecker function ring of D which is a flat $D[X]$-module, then $D^v = D^v$.

Proof. It follows from Lemma 1 and Lemma 2 that each valuation overring of D^v is of the form $(D[X])_{p(X)}$, where $D_{p(X)}$ is a valuation
overring of \(D\). Therefore, \(D = D' \cap K = (\cap a(D[X])_{p_a[x]} \cap K = \cap aD_{p_a}\) and it follows from [1, 36.13] that \(D' = D^e\).

References

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061