A NEW CHARACTERIZATION OF DEDEKIND DOMAINS

E. W. JOHNSON AND J. P. LEDIAEV

Abstract. In this note it is shown that a Noetherian ring R is a Dedekind domain if every maximal ideal M of R satisfies the cancellation law: if A and B are nonzero ideals of R and $MA = MB$, then $A = B$.

Let R be a Noetherian domain (commutative with 1). And let S be the semigroup of ideals of R under multiplication. It is well known that R is a Dedekind Domain if, and only if, every element $A \in S$ satisfies the cancellation law: if $B, C \in S$ and $A \neq 0$, then $AB = AC$ implies $B = C$. Since a Dedekind domain has the property that every ideal is a product of primes, however, it is natural to ask if the assumption that every ideal is cancellable is necessary. In this note we show that a Noetherian ring is a Dedekind domain if every maximal ideal is cancellable.

For an extensive bibliography on Dedekind domains we refer the reader to [1].

The main tool used in the following is the theorem, due to Samuel [2], that if Q is an ideal primary for the maximal ideal of a local ring R, then for sufficiently large values of n, the length of R/Q^n is a polynomial in n of degree equal to the rank of M. We denote this polynomial by $p_Q(x)$.

We begin with the following:

Lemma. Let R be a local ring in which the maximal ideal M satisfies the cancellation law. Then either $M = 0$ or M has rank 1.

Proof. Since M satisfies the cancellation law, either $M = 0$ or $0 : M = 0$. In the second case, set $M = (a_1, \ldots, a_d)$ and let $p(x)$ be the polynomial $p_M(x+1) - p_M(x)$. Then for sufficiently large values of n, $p(n)$ is the length of the R-module M^n/M^{n+1}, which is also the number of elements in a minimal base for M^n. Now, for all $n \geq 1$, $M^{nd+n} = M^{nd}(a_1^n, \ldots, a_d^n)$, so, by cancellation, $M^n = (a_1^n, \ldots, a_d^n)$. Hence $p(n) \leq d$ for all sufficiently large n. Since $0 : M = 0$, it follows that $p(x)$ has degree 0, and therefore that $p_M(x)$ has degree 1. Hence M has rank 1. Q.E.D.

Received by the editors February 16, 1970.

Key words and phrases. Dedekind domain, cancellation law.

Copyright © 1971, American Mathematical Society
Theorem. Let \(R \) be a Noetherian ring such that every maximal ideal satisfies the cancellation law. Then \(R \) is a Dedekind Domain.

Proof. Assume that \(R \) is not a field. It suffices to show that for every maximal ideal \(M, R_M \) is a regular local ring of altitude 1. To do this, fix \(M \) and set \(\overline{R} = R_M \). We adopt the notation that for any ideal \(A \) of \(R \), \(\overline{A} = AR_M \). Then \(\overline{A}M : \overline{M} \) \(= (AM : M)R_M = \overline{A} \), so the maximal ideal \(\overline{M} \) of the local ring \(\overline{R} \) is cancellable. Since \(\overline{M} \neq 0 \), \(\overline{M} \) has rank 1 by the Lemma. Clearly, \(\overline{M} \) is not a prime of 0 in \(\overline{R} \), so there exists an element \(a \in \overline{R} \) such that \(a \subseteq \overline{M}, a \notin \overline{M}^2 \), and \(a \) is not an element of any prime of 0 (see, for example, [3, p. 406]). Then the ideal \((a) \) is primary for \(\overline{M} \), so there exists an integer \(k \) such that \(\overline{M}^k \subseteq (a) \) and \(\overline{M}^{k+1} \subseteq (a) \) (where \(\overline{M}^{k} = \overline{R} \) if \(k = 0 \)). Hence \(\overline{M}^{k+1} = \overline{M}^{k+1} \cap (a) = (\overline{M}^{k+1} : (a))(a) \); and therefore either \(\overline{M}^{k+1} \subseteq \overline{M}(a) \) or \(\overline{M}^{k+1} = (a) \). However, if \(\overline{M}^{k+1} \subseteq \overline{M}(a) \), then \(\overline{M}(a) = \overline{M}((\overline{M}^k + (a)) \) and \((a) = \overline{M}^k + (a) \), which contradicts the choice of \(k \). Hence \(\overline{M}^{k+1} = (a) \), so by the choice of \(a, k = 0 \) and \(\overline{M} \) is principal. Since \(\overline{M} \) is not a prime of 0 in \(\overline{R} \), this completes the proof.

References

University of Iowa, Iowa City, Iowa 52240