Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Coefficients of meromorphic schlicht functions


Author: Peter L. Duren
Journal: Proc. Amer. Math. Soc. 28 (1971), 169-172
MSC: Primary 30.43
DOI: https://doi.org/10.1090/S0002-9939-1971-0271329-7
MathSciNet review: 0271329
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents an elementary proof of a known theorem on the coefficients of meromorphic schlicht functions: if $ f \in \Sigma $ and $ {b_k} = 0$ for $ 1 \leqq k < n/2$, then $ \vert{b_n}\vert \leqq 2/(n + 1)$.


References [Enhancements On Off] (What's this?)

  • [1] P. L. Duren, Coefficient estimates for univalent functions, Proc. Amer. Math. Soc. 13 (1962), 168-169. MR 28 #1286. MR 0158059 (28:1286)
  • [2] P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. (2) 61 (1955), 116-136. MR 16, 579. MR 0066457 (16:579c)
  • [3] G. M. Goluzin, Some estimates of the coefficients of schlicht functions, Mat. Sb. 3 (1938), 321-330. (Russian)
  • [4] -, On $ p$-valent functions, Mat. Sb. 8(50) (1940), 277-284. (Russian) MR 2, 185.
  • [5] J. A. Jenkins, On certain coefficients of univalent functions. II, Trans. Amer. Math. Soc. 96 (1960), 534-545. MR 23 #A309. MR 0122978 (23:A309)
  • [6] Ch. Pommerenke, Unpublished Lecture Notes, March 1969.
  • [7] M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55. MR 1505083

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30.43

Retrieve articles in all journals with MSC: 30.43


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0271329-7
Keywords: Coefficient estimates, schlicht functions, Faber polynomials, Grunsky inequalities
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society