DECOMPOSITION OF FUNCTION-LATTICES

S. D. SHORE

Abstract. We give a simple direct proof of the theorem (due to Kaplansky-Blair-Burrill) that the lattice \(C(X, K) \) of all continuous functions defined on the topological space \(X \) with values in the chain \(K \) can be decomposed iff \(X \) contains an open-and-closed subset.

For any topological space \(X \), let \(C(X, K) \) denote the lattice of all \(K \)-valued continuous functions defined on \(X \), where \(K \) is any non-singleton totally ordered set with the order topology. Clearly, if \(A \) is any open-and-closed subspace of \(X \), then \(C(X, K) \) is lattice isomorphic to the direct product \(C(A, K) \times C(X \setminus A, K) \). Improving a technique of Kaplansky [2], Blair and Burrill [1] have shown that a converse holds. We give a simple alternative proof of this result which, in contrast to the proofs of Kaplansky and Blair-Burrill, avoids use of the axiom of choice. For this observation and several other suggestions for improving the presentation we are grateful to the referee.

A sublattice \(L \subseteq C(X, K) \) is adequate provided that, for each \(x \in X \), there are functions \(f, g \in L \) such that \(f(x) \neq g(x) \).

Theorem. If an adequate sublattice \(L \) of \(C(X, K) \) is lattice isomorphic to the direct product \(L_1 \times L_2 \) of lattices \(L_1 \) and \(L_2 \), then there is an open-and-closed subset \(A \subseteq X \) such that \(L_1 \) is lattice isomorphic to \(\{f| A : f \in L_1 \} \) and \(L_2 \) is lattice isomorphic to \(\{f| (X \setminus A) : f \in L_2 \} \).

We first establish a

Lemma. Let \(L_1 \) and \(L_2 \) be lattices and \(K \) be a totally ordered set. If \(\alpha: L_1 \times L_2 \to K \) is a lattice homomorphism, then one of the following holds:

1. For any \(k, k' \in L_2, \alpha(l, k) = \alpha(l, k') \) for any \(l \in L_1 \).
2. For any \(l, l' \in L_1, \alpha(l, k) = \alpha(l', k) \) for any \(k \in L_2 \).

Moreover, if \(\alpha \) is not constant, then precisely one of these holds.

Proof. Note that (1) is equivalent to:

\(1' \) For any \(k, k' \in L_2, \alpha(l_0, k) = \alpha(l_0, k') \) for some \(l_0 \in L_1 \).

This follows from the observation that

Received by the editors September 22, 1969.

AMS 1968 subject classifications. Primary 4625; Secondary 0630.

Key words and phrases. Lattices of chain-valued functions, adequate sublattices, homomorphism, connectedness.

Copyright © 1971, American Mathematical Society
\[\alpha(l, k) = \alpha(((l_0, k) \land (l, k \lor k')) \lor (l, k \land k')) \]
\[= \alpha(((l_0, k') \land (l, k \lor k')) \lor (l, k \land k')) = \alpha(l, k'). \]

Similarly, (2) is equivalent to:

(2') For any \(l, l' \in L_1 \), \(\alpha(l, k_0) = \alpha(l', k_0) \) for some \(k_0 \in L_2 \).

Now, assume that condition (2) fails. Then, there exist \(l, l' \in L_1 \) such that \(\alpha(l, k) \neq \alpha(l', k) \) for any \(k \in L_2 \). To show that condition (1) holds, consider any \(k, k' \in L_2 \). Then,

\[\alpha(l \land l', k \lor k') \lor \alpha(l \lor l', k \land k') = \alpha(l \lor l', k \lor k'). \]

Since \(K \) is totally ordered and \(\alpha(l \lor l', k \lor k') = \alpha(l \lor l', k \land k') \) implies that \(\alpha(l, k \lor k') = \alpha(l', k \lor k') \) (a contradiction), we conclude that \(\alpha(l \lor l', k \land k') = \alpha(l \lor l', k \lor k') \).

Hence, \(\alpha(l \lor l', k) = \alpha(l \lor l', k') \) so that conditions (1') and (1) hold. Evidently, both conditions hold iff \(\alpha \) is constant.

Proof of the Theorem. Let \(L \) be an adequate sublattice of \(C(X, K) \) and \(\psi: L_1 \times L_2 \to L \) be a lattice isomorphism. For each \(x \in X \), the lattice homomorphism \(\varphi_x: L_1 \to K \), defined by \(\varphi_x(f) = f(x) \), is not constant. From the preceding lemma \(\varphi_x \circ \psi: L_1 \times L_2 \to K \) satisfies one, and only one, of the conditions (1) and (2). Define \(A = \{ x \in X: \varphi_x \circ \psi \) satisfies condition (1) \}. It follows easily that \(A \) and \(X \setminus A \) are disjoint closed sets. Finally, define \(\theta: L_1 \to \{ f \in L_1: f \in L \} \) by \(\theta(l) = f \) \(A \), where \(f = \psi(l, k_0) \) for some \(k_0 \in L_2 \). It follows directly that \(\theta \) is a lattice isomorphism. Similarly, one considers \(X \setminus A \) so that the proof of the theorem is complete.

Remarks. An easy corollary is that a topological space \(X \) is connected iff, for any totally ordered set \(K \), there is no adequate sublattice \(L \subseteq C(X, K) \) which is lattice isomorphic to the direct product \(L_1 \times L_2 \) of two lattices \(L_1 \) and \(L_2 \), neither of which is a singleton. Hence, a topological space \(X \) is connected iff every extension of \(X \) is connected (where an extension of \(X \) is any topological space that contains \(X \) as a dense subspace).

References

University of New Hampshire, Durham, New Hampshire 03824