Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimal immersions of $ 2$-spheres in $ S\sp{4}$

Author: Ernst A. Ruh
Journal: Proc. Amer. Math. Soc. 28 (1971), 219-222
MSC: Primary 53.75
MathSciNet review: 0271880
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classification of isolated singularities of minimal varieties leads to the study of minimal manifolds in the $ n$-sphere. The object of this paper is to show that a minimal $ 2$-sphere in $ {S^4}$ with trivial normal bundle is the standard $ 2$-sphere.

References [Enhancements On Off] (What's this?)

  • [1] F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. MR 0200816
  • [2] Heinz Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232–249 (German). MR 0040042
  • [3] H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187–197. MR 0238229
  • [4] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • [5] James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 0233295

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53.75

Retrieve articles in all journals with MSC: 53.75

Additional Information

Keywords: Codazzi equations, Euler number, minimal immersion, normal bundle, parallel mean curvature
Article copyright: © Copyright 1971 American Mathematical Society