Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounded solutions of Stieltjes integral equations


Author: David Lowell Lovelady
Journal: Proc. Amer. Math. Soc. 28 (1971), 127-133
MSC: Primary 45.30; Secondary 34.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0273333-1
MathSciNet review: 0273333
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are found for the existence of bounded solutions to some classes of nonhomogeneous linear Stieltjes integral equations. A theorem on the stability of bounded solutions is obtained, an application to a nonlinear Stieltjes integral equation is made.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Barbašin, On stability with respect to impulsive disturbances, Differencial 'nye Uravnenija 2 (1966), 863-871. (Russian) MR 36 #6714. MR 0223666 (36:6714)
  • [2] R. Bellman, On an application of a Banach-Steinhaus theorem to the study of the boundedness of solutions of nonlinear differential and difference equations, Ann. of Math. (2) 49 (1948), 515-522. MR 10, 121. MR 0026198 (10:121b)
  • [3] T. G. Hallam, On the asymptotic growth of the solutions of a system of nonhomogeneous linear differential equations, J. Math. Anal. Appl. 25 (1969), 254-265. MR 38 #2388. MR 0234069 (38:2388)
  • [4] D. L. Lovelady, A variation-of-parameters inequality, Proc. Amer. Math. Soc. 26 (1970), 598-602. MR 0435526 (55:8485)
  • [5] J. S. Mac Nerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148-173. MR 26 #1726. MR 0144179 (26:1726)
  • [6] -, A nonlinear integral operation, Illinois J. Math. 8 (1964), 621-638. MR 29 #5082. MR 0167815 (29:5082)
  • [7] R. H. Martin, Jr., A bound for solutions of Volterra-Stieltjes integral equations, Proc. Amer. Math. Soc. 23 (1969), 506-512. MR 40 #662. MR 0247394 (40:662)
  • [8] -, Bounds for solutions to a class of nonlinear integral equations (submitted).
  • [9] J. L. Massera and J. J. Schäffer, Linear differential equations and functional analysis. I, Ann. of Math. (2) 67 (1958), 517-573. MR 20 #3466. MR 0096985 (20:3466)
  • [10] J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math. 8 (1958), 529-549. MR 21 #1509. MR 0102723 (21:1509)
  • [11] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703-728. MR 1545194
  • [12] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420. MR 0210528 (35:1420)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45.30, 34.00

Retrieve articles in all journals with MSC: 45.30, 34.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0273333-1
Keywords: Bounded solutions, Stieltjes integral equations, Banach-Steinhaus Theorem, stability
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society