ON DIFFERENTIABILITY OF MINIMAL SURFACES AT A BOUNDARY POINT

TUNC GEVECI

Abstract. Let \(F(z) = \{u(z), v(z), w(z)\}, |z| < 1 \), represent a minimal surface spanning the curve \(\Gamma: \{U(s), V(s), W(s)\}, s \) being the arc length. Suppose \(\Gamma \) has a tangent at a point \(P \). Then \(F(z) \) is differentiable at this point if \(U'(s), V'(s), W'(s) \) satisfy a Dini condition at \(P \).

Let \(\Gamma \) be a closed rectifiable Jordan curve in Euclidean 3-space, and let \(F(z) = \{u(z), v(z), w(z)\} \), defined in the disk \(\{z: |z| < 1\} \) (\(z = x + iy = re^{i\theta} \)), represent a generalized minimal surface spanning \(\Gamma \), i.e.

1. \(u(z), v(z), w(z) \) are harmonic in \(|z| < 1 \) and continuous in \(|z| \leq 1 \);
2. \(x, y \) are isothermal parameters in \(|z| \leq 1 \), i.e.

\[
\begin{align*}
1. & \quad |F_x|^2 = u_x^2 + v_x^2 + w_x^2 = |F_y|^2 = u_y^2 + v_y^2 + w_y^2, \\
2. & \quad F_x \cdot F_y = u_xu_y + v_xv_y + w_xw_y = 0;
\end{align*}
\]

3. \(F(e^{i\theta}), 0 \leq \theta < 2\pi, \) is a homeomorphism of \(|z| = 1 \) with \(\Gamma \).

The components \(u, v, w \) of the vector \(F \) are the real parts of analytic functions in \(|z| < 1 \):

\[
\lambda(z) = u(z) + iu^*(z), \quad \mu(z) = v(z) + iv^*(z), \quad \nu(z) = w(z) + iw^*(z).
\]

Recently various theorems dealing with the boundary behavior of conformal maps in the plane have been extended to minimal surfaces by J. C. C. Nitsche [2], D. Kinderlehrer [1], S. E. Warschawski [3], and other authors. Nitsche’s paper contains a survey of prior work on the boundary behavior of minimal surfaces. The purpose of this note is to present a local result concerning differentiability of minimal surfaces at a given point on the boundary. In fact, our result extends a theorem of Warschawski on conformal mapping in the plane, namely Theorem 1 in [4].

Theorem. Suppose \(\{U(s), V(s), W(s)\} \) denotes the parametric representation of \(\Gamma \) in terms of arc length. Assume \(P_0 = \{U(s_0), V(s_0), W(s_0)\} \) is a point of \(\Gamma \) and that \(\Gamma \) has a tangent at \(P_0 \), i.e. \(U'(s_0), V'(s_0), W'(s_0) \) exist.2

Received by the editors May 8, 1970.

AMS 1969 subject classifications. Primary 5304, 3040, 3062.

Key words and phrases. Complex analysis, minimal surfaces, boundary behavior.

1 Research supported in part by U. S. Air Force Grant AFOSR-68-1514.

2 We assume \(\{U'(s_0), V'(s_0), W'(s_0)\} \) represents the unit tangent to \(\Gamma \) at \(P_0 \).

Copyright © 1971, American Mathematical Society
Suppose that there exists a nondecreasing, continuous function \(\omega(t) \geq 0, 0 \leq t \leq a (a > 0) \), such that

\[
\int_0^a \frac{\omega(t)}{t} \, dt < \infty
\]

and

\[
| U'(s) - U'(s_0) | \leq \omega\left(| s - s_0 | \right),
\]

\[
| V'(s) - V'(s_0) | \leq \omega\left(| s - s_0 | \right),
\]

\[
| W'(s) - W'(s_0) | \leq \omega\left(| s - s_0 | \right),
\]

for all points \(\{ U(s), V(s), W(s) \} \) in a neighborhood of \(P_0 \) at which \(U'(s), V'(s), W'(s) \) exist.\(^3\)

Let \(F(e^{\theta_0}) = P_0 \). Then

\[
\lim_{z \to z_0} \frac{\lambda(z) - \lambda(z_0)}{z - z_0} = \lambda'(z_0) \quad (z_0 = e^{\theta_0})
\]

exists for unrestricted approach in \(| z | \leq 1 (z \neq z_0) \), and

\[
\lim_{z \to z_0} \lambda'(z) = \lambda'(z_0)
\]

for \(z \) in any Stolz angle with vertex at \(z_0 \). The same holds for \(\mu(z) \) and \(\nu(z) \).\(^4\)

Proof. Without loss of generality we may assume \(U'(s_0) = 1, V'(s_0) = 0, W'(s_0) = 0 \). Under the conditions of the theorem Warshawski proved the following facts (see [3, Part II, §§2–7]):

There is an interval \([\theta_1, \theta_2] \) containing \(\theta_0 \) in its interior, a constant \(a > 1 \), and a sector \(S = \{ z = re^{i\theta} : 0 < r < 1, \theta_1 < \theta < \theta_2 \} \) such that, if \(\varphi(\xi) \) maps \(| \xi | < 1 \) conformally onto \(S (\varphi(1) = e^{\theta_0}) \) and

\[
f = \log \left(\frac{X + a}{X} \right) = \log \left[\frac{X + a}{X} \right],
\]

then \(\lim_{r \to 1} \text{Im} \, f(\xi) \) exists for unrestricted approach in \(| \xi | \leq 1 \) as well as \(\lim_{r \to 1} \varphi(\xi) = \varphi(1) \). The same holds for \(i\bar{g} = i[\mu_\theta/(\lambda_\theta + \alpha)] \circ \varphi = i[\lambda_\theta/(\lambda_\theta + \alpha)] \) and \(i\bar{h} = i[\nu_\theta/(\lambda_\theta + \alpha)] \circ \varphi = i[\lambda_\theta/(\lambda_\theta + \alpha)] \).\(^5\) Let \(\Phi(\xi) \)

\[^3\] It should be noted that under the hypotheses of the theorem one can show the existence of a subarc \(\gamma \) containing \(P_0 \) in its interior and having the following property: \(\Delta s \leq c(P_1P_2) \) where \(c \) is a constant, \(c > 1 \), \(\Delta s \) is the length of the subarc of \(\gamma \) between \(P_1, P_2, P \), and \((P_1P_2) \) is the chordal distance.

\[^4\] The author wishes to express his indebtedness to the referee for his remark simplifying the statement of the theorem.

\[^5\] Isothermal relations (1) and (2) are essential in obtaining these results.
Let $\Phi(\zeta) + i\Phi_2(\zeta)$ ($\Phi = \text{Re } \Phi$, $\Phi_2 = \text{Im } \Phi$) be holomorphic in $|\zeta| < 1$. Assume

\[\lim_{\rho \to 1} \Phi(\rho) = \Phi(1) = \Phi_1(1) + i\Phi_2(1) \]

exists, and

\[\lim_{\zeta \to 1} \Phi_2(\zeta) = \Phi_2(1) \]

for unrestricted approach in $|\zeta| < 1$. Then by a theorem of Warschawski [5, p. 315, Theorem II] one has

\[\lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \left\{ \exp[\Phi(e^{it}) - \Phi(1)] - 1 \right\} dt = 0. \]

Also, it is readily seen from the proof of this theorem that

There exists a subarc γ of $|\zeta| = 1$ with midpoint $\zeta = 1$

(iii) such that $\lim_{\rho \to 1} \Phi(\rho e^{it}) = \Phi(e^{it})$ exists for almost all $e^{it} \in \gamma$, $\Phi(e^{it})$ is integrable along γ, and

\[\lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta |\Phi(e^{it}) - \Phi(1)|^2 dt = 0. \]

Since $\varphi'(\zeta) \neq 0$, we can define $\log \varphi'(\zeta)$ as a single valued analytic function in $|\zeta| < 1$. By our remarks at the beginning, $\Phi_0(\zeta) = \overline{f}(\zeta) + \log \varphi'(\zeta)$ satisfies (3) and (4) and we can apply (5) to $\Phi_0(\zeta)$ to obtain

\[\lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \left\{ \exp[\log(\lambda_\theta(e^{it}) + \alpha) + \varphi'(e^{it}) - \log(\lambda_\theta(1) + \alpha) - \log \varphi'(1)] \right\} dt = 1 \]

which implies

\[\lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \frac{(\lambda_\theta(e^{it}) + \alpha)\varphi'(e^{it})}{(\lambda_\theta(1) + \alpha)\varphi'(1)} e^{it} dt = 1. \]

Letting $\varphi(e^{it}) = e^{it}$ and changing the variable of integration ($\varphi(e^{it}) = e^{it}$) we readily obtain
\[
\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} (\lambda(e^{i\theta}) + \alpha)e^{i\theta} \, d\theta = (\lambda(e^{i\theta_0}) + \alpha)e^{i\theta_0}.
\]

Now,
\[
e^{i\theta_0} \left[\frac{\lambda(e^{i\xi}) - \lambda(e^{i\theta_0})}{\xi - \theta_0} \right]
\]
\[
= \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \lambda(e^{i\theta})(e^{i\theta_0} - e^{i\theta}) \, d\theta + \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \lambda(e^{i\theta})e^{i\theta} \, d\theta,
\]

since \(\lambda(e^{i\theta})\) is absolutely continuous [3]. By (8), the second term in (9) approaches the limit \(\lambda(e^{i\theta_0})e^{i\theta_0}\), and the first term approaches 0 as \(\xi \to \theta_0\), since
\[
\frac{1}{|\xi - \theta_0|} \int_{\theta_0}^{\xi} |\lambda(e^{i\theta})| \cdot |e^{i\theta_0} - e^{i\theta}| \, d\theta \leq \frac{|e^{i\xi} - e^{i\theta_0}|}{\xi - \theta_0} \int_{\theta_0}^{\xi} |\lambda(e^{i\theta})| \, d\theta
\]
and \(\lambda(e^{i\theta})\) is integrable. Therefore,
\[
\lim_{\xi \to \theta_0} \frac{\lambda(e^{i\xi}) - \lambda(e^{i\theta_0})}{\xi - \theta_0} = \lambda(e^{i\theta_0}).
\]

From (10) it follows that
\[
\lim_{e^{i\theta_0} \to e^{i\theta_0}} \frac{\lambda(e^{i\theta}) - \lambda(e^{i\theta_0})}{e^{i\theta} - e^{i\theta_0}} = \lambda'(e^{i\theta_0})
\]
exists.

The function \((\lambda(z) - \lambda(e^{i\theta_0}))/(z - e^{i\theta_0})\) is holomorphic in \(|z| < 1\) and by (11) and by the fact that \(\lambda(z)\) is continuous on \(|z| = 1\) it is bounded on \(|z| = 1\). The continuity of \(\lambda(z)\) in \(|z| \leq 1\) also ensures that
\[
\frac{\lambda(z) - \lambda(e^{i\theta_0})}{z - e^{i\theta_0}} = O\left(\frac{1}{|z - e^{i\theta_0}|}\right) \quad \text{for} \quad |z| < 1.
\]

Therefore, by a theorem of Phragmén-Lindelöf
\[
((\lambda(z) - \lambda(e^{i\theta_0}))/(z - e^{i\theta_0})
\]
is bounded in \(|z| < 1\). Hence, by a theorem of Lindelöf,
\[
\lim_{z \to e^{i\theta_0}} \frac{\lambda(z) - \lambda(e^{i\theta_0})}{z - e^{i\theta_0}} = \lambda'(e^{i\theta_0})
\]
for unrestricted approach in \(|z| \leq 1\). The second equation,
\[
\lim_{z \to z_0} \lambda'(z) = \lambda'(z_0) \text{ in any Stolz angle with vertex at } z_0, \text{ is a well-known consequence of the first.}
\]

We can apply (7) to \(i\hat{g}(\xi) \) and obtain
\[
(12) \quad \lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \left| \frac{\bar{\mu}_\theta(e^{i t})}{\bar{\lambda}_\theta(e^{i t}) + \alpha} - \frac{\bar{\mu}_\theta(1)}{\bar{\lambda}_\theta(1) + \alpha} \right|^2 dt = 0.
\]

Also, we can apply (6) to \(2\hat{f}(\xi) \) and conclude that
\[
(13) \quad \lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \left\{ \left| \frac{\bar{\lambda}_\theta(e^{i t}) + \alpha}{\bar{\lambda}_\theta(1) + \alpha} \right|^2 - 1 \right\} dt = 0.
\]

Thus,
\[
(14) \quad \frac{1}{|\eta|} \int_0^\eta \left| \frac{\bar{\lambda}_\theta(e^{i t}) + \alpha}{\bar{\lambda}_\theta(1) + \alpha} \right|^2 dt \leq M_0
\]

for \(|\eta| \leq \eta_0\) and some constant \(M_0\).

By Schwarz's inequality,
\[
\frac{1}{\eta} \int_0^\eta \left| \frac{\bar{\mu}_\theta(e^{i t})}{\bar{\lambda}_\theta(e^{i t}) + \alpha} - \frac{\bar{\mu}_\theta(1)}{\bar{\lambda}_\theta(1) + \alpha} \right| dt \leq \left(\frac{1}{\eta} \int_0^\eta \left| \frac{\bar{\mu}_\theta(e^{i t})}{\bar{\lambda}_\theta(e^{i t}) + \alpha} - \frac{\bar{\mu}_\theta(1)}{\bar{\lambda}_\theta(1) + \alpha} \right|^2 dt \right)^{1/2}
\]

\[
\cdot \left(\left| \frac{\bar{\lambda}_\theta(1) + \alpha}{\bar{\lambda}_\theta(1) + \alpha} \right|^2 \frac{1}{\eta} \int_0^\eta \left| \bar{\lambda}_\theta(e^{i t}) + \alpha \right|^2 dt \right)^{1/2}.
\]

(12), (14) and (15) imply
\[
(16) \quad \lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \left| \frac{\bar{\mu}_\theta(e^{i t})}{\bar{\lambda}_\theta(e^{i t}) + \alpha} - \frac{\bar{\mu}_\theta(1)}{\bar{\lambda}_\theta(1) + \alpha} \right| dt = 0.
\]

Since \(\varphi'(e^{i \xi})\) is bounded in a neighborhood of \(\xi = 1\), we also have
\[
(17) \quad \lim_{\eta \to 0} \frac{1}{\eta} \int_0^\eta \left| \frac{\bar{\mu}_\theta(e^{i t})}{\bar{\lambda}_\theta(e^{i t}) + \alpha} - \frac{\bar{\mu}_\theta(1)}{\bar{\lambda}_\theta(1) + \alpha} \right| |\varphi'(e^{i t})| dt = 0.
\]

Changing the variable of integration, as in the case of \(\lambda_\theta(e^{i \theta})\), one concludes from (17) that
\[
(18) \quad \lim_{\xi \to 0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^\xi \left| \mu_\theta(e^{i \theta}) (\lambda_\theta(e^{i \theta}) + \alpha) - \mu_\theta(e^{i \theta_0}) (\lambda_\theta(e^{i \theta}) + \alpha) \right| d\theta = 0.
\]

Thus,
\[(\lambda_{\theta}(e^{\theta_0}) + \alpha) \lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \mu_{\theta}(e^{\theta}) \, d\theta \]

\[= \mu_{\theta}(e^{\theta_0}) \lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} (\lambda_{\theta}(e^{\theta}) + \alpha) \, d\theta. \]

By (10)

\[\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} (\lambda_{\theta}(e^{\theta}) + \alpha) \, d\theta = \lambda_{\theta}(e^{\theta_0}) + \alpha, \]

and \(\lambda_{\theta}(e^{\theta_0}) + \alpha \neq 0.\)

Therefore (19) and (20) imply

\[\lim_{\xi \to \theta_0} \frac{1}{\xi - \theta_0} \int_{\theta_0}^{\xi} \mu_{\theta}(e^{\theta}) \, d\theta = \mu_{\theta}(e^{\theta_0}). \]

From (21) one infers that

\[\lim_{z \to e^{\theta_0}} \frac{\mu(z) - \mu(e^{\theta_0})}{z - e^{\theta_0}} \]

exists for unrestricted approach in \(|z| \leq 1\), exactly the same way as we showed this limit exists in the case of \(\lambda(z)\). We deal with \(\nu(z)\) in a similar fashion.

It should be noted that one may assume only the subarc \(\gamma\) to be rectifiable and obtain the same result with slight modification of our proof.

Bibliography

University of California at San Diego, La Jolla, California 92037