Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On an asymptotic property of a Volterra integral equation


Author: A. F. Izé
Journal: Proc. Amer. Math. Soc. 28 (1971), 93-99
MSC: Primary 45.13; Secondary 34.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0275078-0
MathSciNet review: 0275078
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ q(t - s)$ is bounded and $ f(t,x)$ is ``small,'' the solutions of the integral equation $ x(t) = a(t) + \int_0^t {q(t - s)f(s,x(s))ds} $ satisfies the conditions $ x(t) = h(t) + \rho (t)a(t),{\lim _{t \to \infty }}a(t) = a$ constant where $ \rho (t)$ is a nonsingular diagonal matrix chosen in such a way that $ \rho (t)h(t)$ is bounded. The results are extended to the more general integral equation $ x(t) = h(t) + \int_0^t {F(t,s,x(s))ds} $ and contain, in particular, some results on the boundedness, asymptotic behavior and existence of nonoscillatory solution of differential equations.


References [Enhancements On Off] (What's this?)

  • [1] F. Brauer and J. S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations 6(1969), 142-153. MR 39 #570. MR 0239213 (39:570)
  • [2] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, 2nd ed., Academic Press, New York and Springer-Verlag, Berlin, 1963. MR 27 #1661.
  • [3] T. G. Hallam, Asymptotic behavior of the solutions of an $ n$th order nonhomogeneous ordinary differential equation, Trans. Amer. Math. Soc. 122 (1966), 177-194. MR 32 #6000. MR 0188562 (32:6000)
  • [4] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier series. Vol. 2, Dover, New York, 1958. MR 19, 1166.
  • [5] R. K. Miller, Nonlinear Volterra integral equations, Lecture Note Series, Benjamin, New York (to appear). MR 0511193 (58:23394)
  • [6] J. A. Nohel, Some problems in nonlinear Volterra integral equations, Bull. Amer. Mat. Soc. 68 (1962), 323-329. MR 26 #2838. MR 0145307 (26:2838)
  • [7] T. Sato and A. Iwasaki, Sur l'équation intégrale de Volterra, Proc. Japan Acad. 31 (1955), 395-398. MR 17, 751. MR 0075457 (17:751c)
  • [8] A. Strauss, On a perturbed Volterra integral equation, Arch. Rational Mech. Anal. (to appear).
  • [9] P. Waltman, On the asymptotic behavior of solutions of a nonlinear equation, Proc. Amer. Math. Soc. 15 (1964), 918-923. MR 31 #445. MR 0176170 (31:445)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45.13, 34.00

Retrieve articles in all journals with MSC: 45.13, 34.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0275078-0
Keywords: Volterra integral equations, asymptotic properties, measurable set, summable, almost all, global existence, kernel, asymptotic behavior asymptotic equilibrium
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society