Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The commutator subgroups of the alternating knot groups


Author: Kunio Murasugi
Journal: Proc. Amer. Math. Soc. 28 (1971), 237-241
MSC: Primary 55.20
DOI: https://doi.org/10.1090/S0002-9939-1971-0275414-5
MathSciNet review: 0275414
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to show that the commutator subgroup of the alternating knot group is the (proper or improper) free product of free groups with isomorphic subgroups amalgamated.


References [Enhancements On Off] (What's this?)

  • [1] C. Bankwitz, Über die Torsionszahlen der alternierenden Knoten, Math. Ann. 103 (1930), 145-161. MR 1512619
  • [2] S. Kinoshita and T. Yajima, On the graphs of knots, Osaka Math. J. 9 (1957), 155-163. MR 20 #4845. MR 0098385 (20:4845)
  • [3] K. Murasugi, On the genus of the alternating knot. II, J. Math. Soc. Japan 10 (1958), 235-248. MR 20 #6103a. MR 0099664 (20:6103a)
  • [4] -, On a certain subgroup of the group of an alternating link, Amer. J. Math. 85 (1963), 544-550. MR 28 #609. MR 0157375 (28:609)
  • [5] -, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422. MR 30 #1506. MR 0171275 (30:1506)
  • [6] L. P. Neuwirth, The algebraic determination of genus of the knots, Amer. J. Math. 82 (1960), 791-798. MR 22 #11397. MR 0120648 (22:11397)
  • [7] H. Seifert, Über des Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55.20

Retrieve articles in all journals with MSC: 55.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0275414-5
Keywords: Algebraically unknotted surface, alternating knot, knot group, commutator subgroup, genus of knot, planar graph, primitive genus, knot diagram, Seifert circuit, primitive $ s$-surface
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society