Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A remark on Mahler's compactness theorem


Author: David Mumford
Journal: Proc. Amer. Math. Soc. 28 (1971), 289-294
MSC: Primary 22.20
MathSciNet review: 0276410
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ G$ is a semisimple Lie group without compact factors, then for all open sets $ U \subset G$ containing the unipotent elements of $ G$ and for all $ C > 0$, the set of discrete subgroups $ \Gamma \subset G$ such that

(a) $ \Gamma \bigcap U = \{ e\}$,

(b) $ G/\Gamma $ compact and measure $ (G/\Gamma ) \leqq C$,

is compact. As an application, for any genus $ g$ and $ \varepsilon > 0$, the set of compact Riemann surfaces of genus $ g$ all of whose closed geodesics in the Poincaré metric have length $ \geqq \varepsilon $, is itself compact.


References [Enhancements On Off] (What's this?)

  • [1] J. W. S. Cassels, An introduction to the geometry of numbers, Springer-Verlag, Berlin, 1959. MR 28 #1175.
  • [2] Claude Chabauty, Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950), 143–151 (French). MR 0038983
  • [3] D. A. Každan and G. A. Margulis, A proof of Selberg’s hypothesis, Mat. Sb. (N.S.) 75 (117) (1968), 163–168 (Russian). MR 0223487
  • [4] André Weil, On discrete subgroups of Lie groups, Ann. of Math. (2) 72 (1960), 369–384. MR 0137792
  • [5] A. M. Macbeath, Groups of homeomorphisms of a simply connected space, Ann. of Math. (2) 79 (1964), 473–488. MR 0160848

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22.20

Retrieve articles in all journals with MSC: 22.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0276410-4
Keywords: Discrete subgroups, Mahler's theorem
Article copyright: © Copyright 1971 American Mathematical Society