Note on a theorem of Pall

Author:
Kenneth S. Williams

Journal:
Proc. Amer. Math. Soc. **28** (1971), 315-316

MSC:
Primary 10.46

DOI:
https://doi.org/10.1090/S0002-9939-1971-0277496-3

MathSciNet review:
0277496

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple proof is given of Pall's formula for the number of representations of a gaussian integer as the sum of two squares of gaussian integers.

**[1]**W. J. Leahey,*A note on a theorem of I. Niven*, Proc. Amer. Math. Soc.**16**(1965), 1130-1131. MR**31**#5860. MR**0181632 (31:5860)****[2]**G. Pall,*Sums of two squares in a quadratic field*, Duke Math. J.**18**(1951), 399-409. MR**12**, 676. MR**0040337 (12:676g)****[3]**K. S. Williams,*On a theorem of Niven*, Canad. Math. Bull.**10**(1967), 573-578; Addendum, Canad. Math. Bull.**11**(1968), 145. MR**37**#138; MR**37**#5152. MR**0224539 (37:138)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10.46

Retrieve articles in all journals with MSC: 10.46

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1971-0277496-3

Keywords:
Gaussian integer,
sum of two squares,
Pall's theorem

Article copyright:
© Copyright 1971
American Mathematical Society