INVARIANT MEASURES ON LOCALLY COMPACT SEMIGROUPS

ROGER RIGELHOF

Abstract. The main result of this paper shows that a locally compact abelian semigroup is embeddable as an open subsemigroup of a locally compact abelian group G if and only if the translations $x \mapsto x + y$ are open maps and there exists a nonnegative regular measure μ on S such that $\mu(U) = \mu(x+U) > 0$ for every open set U and x in S.

Our main result is a somewhat stronger statement than the above in that we show that whenever such a measure exists it is the restriction to S of the Haar measure on G. This provides a partial answer to a question raised by J. H. Williamson in [5, §5]. We follow the terminology of [5] as regards semigroups and the measure theoretic terminology of [3]. In particular:

A locally compact abelian semigroup S is an abelian semigroup (not necessarily having a unit) which is a locally compact Hausdorff space such that for each y in S the map $x \mapsto x + y$ is continuous. We say that a locally compact abelian semigroup S is embeddable in a locally compact group G if there exists a bicontinuous semigroup monomorphism ϕ mapping S into G. The following proposition is of independent interest (see [4, Theorem 2.1 and Lemma 1.3]).

Proposition. Let S be a locally compact abelian semigroup. The following conditions on S are equivalent.

1. S is a cancellation semigroup and for each open subset U of S, $x + U$ is open for each x in S.

2. S is embeddable as an open subsemigroup of a locally compact group G.

Proof. It is clear that (2) implies (1). To show that (1) implies (2) let R be the equivalence relation on $S \times S$ defined by $(x, y)R(x_0, y_0)$ if and only if $x + y_0 = y + x_0$. It is well known and easy to show that $G = S \times S/R$ is an abelian group. For x in S let $\phi(x)$ be the equivalence class $\{(x+y, y) : y \in S\}$. The map $\phi : x \mapsto \phi(x)$ is one-one and satisfies $\phi(x+y) = \phi(x) + \phi(y)$. We now define a topology on G. For x in S let $\mathcal{B}(x)$ be the neighbourhood filter of x. Choose some x_0 in S and for
each \(x \) in \(G \) let \(x \cdot \mathcal{B} \) be the filter on \(G \) generated by the filter base \(\{ \phi(U) - \phi(x_0) + x : U \subseteq \mathcal{B}(x_0) \} \). We first show that if \(x \in S \), then \(\phi(x) \cdot \mathcal{B} \) is generated by the filter base \(\{ \phi(U) : U \subseteq \mathcal{B}(x) \} \). Given \(U \subseteq \mathcal{B}(x_0) \), \(U + x \subseteq \mathcal{B}(x + x_0) \) and the continuity of \(\alpha \rightarrow x + \alpha \) at \(x \) means there is a \(V \subseteq \mathcal{B}(x) \) with \(V + x_0 \subseteq U + x \) and so \(\phi(V) \subseteq \phi(U) - \phi(x_0) + \phi(x) \). Conversely given \(V \subseteq \mathcal{B}(x) \), \(V + x_0 \subseteq \mathcal{B}(x + x_0) \) and the continuity of \(\alpha \rightarrow x + \alpha \) at \(x_0 \) means there is a \(U \subseteq \mathcal{B}(x_0) \) such that \(U + x \subseteq V + x_0 \) and so \(\phi(U) - \phi(x_0) + \phi(x) \subseteq \phi(V) \). Therefore \(\phi(x) \cdot \mathcal{B} \) is generated by \(\{ \phi(U) : U \subseteq \mathcal{B}(x) \} \). We now show that there is a unique topology on \(G \) such that for each \(x \) in \(G \), \(x \cdot \mathcal{B} \) is the neighbourhood filter of \(x \). For this it is sufficient by [1, Chapitre 1, §1, No. 1] to show for each \(x \) in \(G \):

(i) if \(V \subseteq x \cdot \mathcal{B} \) then \(x \in V \\
(ii) if \(V \subseteq x \cdot \mathcal{B} \) then there is a \(W \subseteq x \cdot \mathcal{B} \) such that \(y \in W \) implies \(V \subseteq y \cdot \mathcal{B} \).

Clearly (i) is satisfied, so we show (ii). Let \(V \subseteq x \cdot \mathcal{B} \). Then there is an open neighbourhood \(U \) of \(x_0 \) such that \(W = \phi(U) - \phi(x_0) + x \subseteq V \).

If \(y \in W \), there is a \(u \in U \) with \(y = \phi(u) - \phi(x_0) + x \) and there is a \(V' \subseteq \mathcal{B}(x_0) \) such that \(V' + x_0 \subseteq U + x_0 \). Thus

\[
\phi(V') - \phi(x_0) + y = \phi(V') - \phi(x_0) + \phi(u) - \phi(x_0) + x \\
\subseteq \phi(U) - \phi(x_0) + x = W
\]

and therefore \(W \subseteq y \cdot \mathcal{B} \) so that (ii) is satisfied.

It is clear that \(G \) with this topology is a Hausdorff space and that the maps \(x \rightarrow x + y \) are continuous. Moreover for each \(x \) in \(S \), \(\phi(x) \cdot \mathcal{B} \) is generated by \(\{ \phi(U) : U \subseteq \mathcal{B}(x) \} \) so that \(\phi \) is a topological embedding and \(\phi(S) \) is an open subset of \(G \). The continuity and openness of the map \(x \rightarrow x + y \) for each \(y \) in \(G \) together with the local compactness of \(S \) imply that \(G \) is locally compact. Thus \(G \) is a locally compact semigroup which is a group. A theorem of R. Ellis [2, Theorem 2] shows that \(G \) is a locally compact group. This completes the proof.

Theorem. Let \(S \) be a locally compact abelian semigroup and \(\mu \) a nonnegative regular measure on \(S \). Suppose that \(S \) and \(\mu \) satisfy the following condition.

\((*)\) For each open set \(U \), \(x + U \) is open for each \(x \) in \(S \) and \(\mu(x + U) = \mu(U) > 0 \).

Then \(S \) is embeddable as an open subsemigroup in a locally compact abelian group \(G \) and \(\mu \) is the restriction of the Haar measure of \(G \) to \(S \). Conversely if \(S \) is an open subsemigroup of a locally compact abelian group \(G \), and if \(\mu \) is the restriction to \(S \) of the Haar measure of \(G \), then \(S \) is a locally compact abelian semigroup and \(S \) and \(\mu \) satisfy condition \((*)\).
Proof. First suppose S and μ are given and satisfy (*). We begin by showing that S is a cancellation semigroup. If not there are x, y, z in S such that $y + x = y + z$ and $x \neq z$. There are open relatively compact neighbourhoods U of x and V of z such that $U \cap V$ is empty. Now

$$\mu((y + U) \cup (y + V)) = \mu(y + (U \cup V)) = \mu(U \cup V)$$

$$= \mu(U) + \mu(V) = \mu(y + U) + \mu(y + V).$$

Since regular measures are by definition finite on compacta it follows that $\mu((y + U) \cap (y + V)) = 0$ which is a contradiction because $(y + U) \cap (y + V)$ is a neighbourhood of $y + x$. Thus S satisfies the hypotheses of the above proposition so S is embeddable as an open subsemigroup of a locally compact abelian group G. In the following we identify S with its image in G.

Let $\mathcal{K}_S(G)$ be the continuous complex-valued functions on G which are zero outside of S and have compact support. Observe that the invariance property of μ means that if $f \in \mathcal{K}_S(G)$ then for each y in S,

$$\int_S f(x - y) d\mu(x) = \int_S f(x) d\mu.$$

Choose $g \in \mathcal{K}_S(G)$ with $g \geq 0$ and $\int g \ d\lambda = 1$ where λ is the Haar measure on G. Then using the Fubini Theorem [3, p. 153] we have

$$\int_S f \ d\mu = \int_S f(x - y) \ d\mu(x) \int g(y) \ d\lambda(y)$$

$$= \int_S \int g(y) \ d\lambda(y) \ d\mu(x)$$

$$= \int_S \int f(y) g(x - y) \ d\lambda(y) \ d\mu(x)$$

$$= \int_S g(x - y) \ d\mu(x) \int f(y) \ d\lambda(y)$$

$$= c \int f \ d\lambda$$

where $c = \int_S g \ d\mu$. It follows now that for any Borel subset $E \subset S$, $\mu(E) = c\lambda(E)$ [3, p. 129]. This completes the proof of the first statement.

If S is an open subsemigroup of a locally compact abelian group, then it is clear that S is a locally compact abelian semigroup. More-
over since \(S \) is open the restriction of the Haar measure on \(G \) to \(S \) yields a nonnegative regular measure \(\mu \) such that condition (*) is satisfied.

References

McGill University, Montreal, Quebec, Canada