A THEOREM ON PERFECT MAPS

ERNEST MICHAEL

1. Introduction. The purpose of this note is to give a short proof of the following theorem, and to indicate some applications.

Theorem 1.1. If \(f: X \to Y \) is perfect,2 and \(g: X \to Z \) is continuous with \(Z \) Hausdorff, then \((f, g): X \to Y \times Z \) is perfect.3

Theorem 1.1 is implicit in the proofs of two results of A. V. Arhangel’skiï [1, Lemmas 1 and 3],4 and also follows immediately from a result on set-valued maps which is stated by Z. Frolik in [3, Proposition 6 and remark at end of §1]. We prove Theorem 1.1 in §2.

The following is a direct consequence of Theorem 1.1.

Corollary 1.2. If \(X \) admits a perfect map into a topological space \(Y \), and a continuous one-to-one map into a Hausdorff space \(Z \), then \(X \) is homeomorphic to a closed subspace of \(Y \times Z \).

Corollary 1.2 immediately implies the nontrivial part ((a) \(\to \) (b)) of the following result, which was essentially obtained by J. Nagata in [4, Theorem 1], and which also follows from J. van der Slot [5, Theorem, p. 21].6

Corollary 1.3. If \(Y \) is any topological space, then the following properties of a completely regular space \(X \) are equivalent.

(a) There exists a perfect map \(f: X \to Y \).

(b) \(X \) is homeomorphic to a closed subspace of \(Y \times Z \) for some compact Hausdorff space \(Z \).

(c) \(X \) is homeomorphic to a closed subspace of \(Y \times Z \) for some compact space \(Z \).

In a different direction, the following result of Bourbaki [2, p. 115,
Proposition 5(d)] is also an easy consequence of Theorem 1.1, as our proof in §3 will show.\footnote{As a partial converse, Corollary 1.4 implies the slight weakening of Theorem 1.1 which results from assuming that Y (as well as Z) is Hausdorff.}

Corollary 1.4. Let $\alpha: A \to B$ and $\beta: B \to C$ be continuous, and suppose that $\beta \circ \alpha$ is perfect and that B is Hausdorff. Then α is perfect.

In conclusion, let us observe that the following useful known result follows immediately from Corollary 1.4 (by taking $\alpha: A \to B$ to be the injection map).

Corollary 1.5. If $\gamma: A \to C$ is perfect, and if γ has a continuous extension $\beta: B \to C$ for some Hausdorff space $B \supseteq A$, then A is closed in B.

2. **Proof of Theorem 1.1.** Clearly (f, g) is the composition of the following two maps:

\[
X \xrightarrow{(i_x, g)} X \times Z \xrightarrow{f \times i_z} Y \times Z.
\]

Now (i_x, g) maps X homeomorphically onto the graph of g, which is closed in $X \times Z$ because Z is Hausdorff. Since $f \times i_z$ is the product of two perfect maps, it is perfect by [2, p. 114, Proposition 4]. Hence (f, g) is perfect.\footnote{The assumption that Z is Hausdorff cannot be dropped, or even weakened to T_1. Example: $X = Y =$ interval I with usual topology, $Z = I$ with cofinite topology, $f = g = i_x$.}

3. **Proof of Corollary 1.4.** If $\gamma = (\alpha, \beta \circ \alpha)$, then $\gamma: A \to B \times C$ is perfect by Theorem 1.1. Now the projection $\pi: B \times C \to B$ maps the graph G_β of β homeomorphically onto B. Since $\gamma(A) \subseteq G_\beta$ and $\alpha = (\pi | G_\beta) \circ \gamma$, it follows that α is perfect.

References

University of Washington, Seattle, Washington 98105