A THEOREM ON PERFECT MAPS

ERNEST MICHAEL

1. Introduction. The purpose of this note is to give a short proof of the following theorem, and to indicate some applications.

Theorem 1.1. If $f:X \to Y$ is perfect, and $g:X \to Z$ is continuous with Z Hausdorff, then $(f, g)_*: X \to Y \times Z$ is perfect.

Theorem 1.1 is implicit in the proofs of two results of A. V. Arhangel'skiï [1, Lemmas 1 and 3], and also follows immediately from a result on set-valued maps which is stated by Z. Frolik in [3, Proposition 6 and remark at end of §1]. We prove Theorem 1.1 in §2.

The following is a direct consequence of Theorem 1.1.

Corollary 1.2. If X admits a perfect map into a topological space Y, and a continuous one-to-one map into a Hausdorff space Z, then X is homeomorphic to a closed subspace of $Y \times Z$.

Corollary 1.2 immediately implies the nontrivial part ($(a) \to (b)$) of the following result, which was essentially obtained by J. Nagata in [4, Theorem 1], and which also follows from J. van der Slot [5, Theorem, p. 21].

Corollary 1.3. If Y is any topological space, then the following properties of a completely regular space X are equivalent.

(a) There exists a perfect map $f:X \to Y$.

(b) X is homeomorphic to a closed subspace of $Y \times Z$ for some compact Hausdorff space Z.

(c) X is homeomorphic to a closed subspace of $Y \times Z$ for some compact space Z.

In a different direction, the following result of Bourbaki [2, p. 115,

Received by the editors April 12, 1970.

AMS 1969 subject classifications. Primary 5460; Secondary 5425.

Key words and phrases. Perfect maps.

1 Partially supported by an NSF grant.

2 A map $f:X \to Y$ (not necessarily onto) is perfect if f is closed (i.e. $f(A)$ is closed in Y for every closed $A \subseteq X$) and $f^{-1}(y)$ is compact for every $y \in Y$. (Perfect maps are called proper by Bourbaki [2].)

3 We define $(f, g)_*(x) = (f(x), g(x))$.

4 It appears that Arhangel'skiï calls a map $f:X \to Y$ perfect in [1] if the map $f:X \to f(X)$ is perfect in our terminology. Thus Arhangel'skiï does not require $f(X)$ to be closed in Y.

5 I am grateful to A. V. Arhangel'skiï for this reference.

Copyright © 1971, American Mathematical Society
Proposition 5(d)] is also an easy consequence of Theorem 1.1, as our proof in §3 will show.⁶

Corollary 1.4. Let \(\alpha : A \to B \) and \(\beta : B \to C \) be continuous, and suppose that \(\beta \circ \alpha \) is perfect and that \(B \) is Hausdorff. Then \(\alpha \) is perfect.

In conclusion, let us observe that the following useful known result follows immediately from Corollary 1.4 (by taking \(\alpha : A \to B \) to be the injection map).

Corollary 1.5. If \(\gamma : A \to C \) is perfect, and if \(\gamma \) has a continuous extension \(\beta : B \to C \) for some Hausdorff space \(B \supset A \), then \(A \) is closed in \(B \).

2. **Proof of Theorem 1.1.** Clearly \((f, g) \) is the composition of the following two maps:

\[
\begin{array}{c}
X \\
\xrightarrow{(i_x, g)}
\end{array}
\begin{array}{c}
X \\
\times Z \\
\xrightarrow{f \times i_Z}
\end{array}
\begin{array}{c}
Y \\
\times Z
\end{array}
\]

Now \((i_x, g) \) maps \(X \) homeomorphically onto the graph of \(g \), which is closed in \(X \times Z \) because \(Z \) is Hausdorff. Since \(f \times i_Z \) is the product of two perfect maps, it is perfect by [2, p. 114, Proposition 4]. Hence \((f, g)\) is perfect.⁷

3. **Proof of Corollary 1.4.** If \(\gamma = (\alpha, \beta \circ \alpha) \), then \(\gamma : A \to B \times C \) is perfect by Theorem 1.1. Now the projection \(\pi : B \times C \to B \) maps the graph \(G_\beta \) of \(\beta \) homeomorphically onto \(B \). Since \(\gamma(A) \subseteq G_\beta \) and \(\alpha = (\pi | G_\beta) \circ \gamma \), it follows that \(\alpha \) is perfect.

References

5. J. van der Slot, Some properties related to compactness, Mathematical Center Tracts 19, Amsterdam, 1966.

University of Washington, Seattle, Washington 98105

⁶ As a partial converse, Corollary 1.4 implies the slight weakening of Theorem 1.1 which results from assuming that \(Y \) (as well as \(Z \)) is Hausdorff.

⁷ The assumption that \(Z \) is Hausdorff cannot be dropped, or even weakened to \(T_1 \). Example: \(X = Y = \text{interval} \ I \) with usual topology, \(Z = I \) with cofinite topology, \(f = g = i_x \).