INTEGRAL RING EXTENSIONS AND PRIME IDEALS OF INFINITE RANK

WILLIAM HEINZER

Abstract. An example is constructed showing that for an integral ring extension $R \subseteq T$, and a prime ideal P of R having infinite rank, it can happen that in T each prime ideal lying over P has finite rank.

By the rank (or height) of a prime ideal P in a commutative ring R is meant the maximal length of descending chains of prime ideals of R starting with P. Thus P has rank n if there exists a descending chain $P = P_0 \supset P_1 \supset \cdots \supset P_n$, but no such chain of longer length; and P has infinite rank (or rank ∞) if there exist arbitrarily long chains of primes descending from P. Let $R \subseteq T$ be a pair of commutative rings (having a common identity). One says that the going up property (GU) holds for the pair $R \subseteq T$ if whenever $P \subseteq P_0$ are prime ideals in R and Q is a prime of T such that $Q \cap R = P$, then there exists a prime Q_0 in T such that $Q \subseteq Q_0$ and $Q_0 \cap R = P_0$. It is well known that if T is integral over R, then GU holds for the pair $R \subseteq T$; and it can be readily seen that if $R \subseteq T$ satisfies GU and P is a prime ideal in R of rank n, then there exists in T a prime ideal Q such that Q has rank $\geq n$ and $Q \cap R = P$ [3, Theorem 46, p. 31]. We show, however, that this result cannot be extended to primes of rank ∞ even for R an integral domain and T the integral closure of R. Of course GU insures that there can be no fixed bound on the ranks of the primes of T lying over a rank ∞ prime P of R. Thus in our example there must be infinitely many primes of T lying over P. In particular, T cannot be a finite R-module [1, p. 40].

The idea involved in our construction may be stated as follows.

Lemma. Let R be a quasi-local domain with maximal ideal P and quotient field K. Assume that for each positive integer n there exists a valuation ring of K containing R and having rank n, but that R is contained in no valuation ring of K having infinite rank. Let T be the integral closure of R. If T is a Prüfer domain, then P has infinite rank but each prime ideal of T has finite rank.

Proof. If Q is a prime ideal of T, then the localization T_Q is a...
valuation ring and the rank of the prime ideal \(Q \) equals the rank of the valuation ring \(T_Q \). Thus each prime of \(T \) has finite rank and by intersecting chains of primes of \(T \) with \(R \), we see that \(P \) has infinite rank.

Construction of the example. Let \(k \) be an arbitrary field and let \(\{ x_i \}_{i=1}^\infty \) be a collection of indeterminates over \(k \). We construct a rank one valuation ring \(V_1 \) on the field \(K = k(x_1, x_2, \ldots) \) such that \(V_1 \) has the form \(k + M_1 \) where \(M_1 \) is the maximal ideal of \(V_1 \). This can be done, for example, by mapping the \(x_i \) onto rationally independent real numbers and then extending this map to a valuation of \(K \) trivial on \(k \). The \(x_i \) having rationally independent values assures that \(k \) maps isomorphically onto the residue field of \(V_1 \) and hence that \(V_1 = k + M_1 \). For each integer \(n \geq 2 \), let \(L_n \) denote the field \(k(\{ x_i \mid i \leq n \text{ or } i \geq 2n \}) \). Thus \(K = L_n(\{ x_{n+1}, \ldots, x_{2n-1} \}) \) and \(x_{n+1}, \ldots, x_{2n-1} \) are algebraically independent over \(L_n \). Consider the valuation ring \(V_1 \cap L_n \). By mapping \(x_{n+1}, \ldots, x_{2n-1} \) onto suitably chosen elements of a suitable totally ordered abelian group containing the value group of \(V_n \), we can obtain a valuation ring \(V_n \) of \(K \) such that:

1. \(V_n \cap L_n = V_1 \cap L_n \).
2. \(V_n \) has rank \(n \).
3. \(V_n \) has the form \(k + M_n \) where \(M_n \) is the maximal ideal of \(V_n \).

See, for example, [1, Proposition 1, p. 161].

Let \(P = \bigcap_{i=1}^\infty M_i \) and let \(R = k + P \). We note that \(R \) is a quasi-local domain with maximal ideal \(P \). For if \(\alpha \) is a nonzero element of \(k \) and \(m \in P \), then \((\alpha + m)^{-1} = \alpha^{-1} + m' \), where \(m' = -m/\alpha(\alpha + m) \in M_i \) for each \(i \), so \(m' \in P \). Let \(T \) be the integral closure of \(R \).

Claim. \(T \) is a Prüfer domain with quotient field \(K \), \(T = \bigcap_{i=1}^\infty V_i \), and no valuation ring between \(T \) and \(K \) has infinite rank.

Proof. Let \(K_n = k(x_1, \ldots, x_n) \), \(R_n = R \cap K_n \), and let \(T_n \) be the integral closure of \(R_n \). Note that for \(s \geq n \), \(V_s \cap K_n = V_{2s} \cap K_n \). Hence

\[
R_n = k + \left(\bigcap_{i=1}^{n-1} M_i \cap K_n \right).
\]

We show that \(T_n = \bigcap_{i=1}^{n-1} V_i \cap K_n \). If \(y \in \bigcap_{i=1}^{n-1} V_i \cap K_n \) then there exists \(a_i \in k \) such that \(y - a_i \in M_i \), for each \(i \) such that \(1 \leq i < n \). It follows that \(\prod_{i=1}^{n-1} (y - a_i) \in \bigcap_{i=1}^{n-1} M_i \cap K_n \subset R_n \) so \(y \) satisfies an equation of integral dependence over \(R_n \). Thus \(T_n \) is a finite intersection of valuation rings of the field \(K_n \). Hence \(T_n \) is a Prüfer domain with quotient field \(K_n \) and each valuation ring containing \(T_n \) contains some \(V_i \cap K_n \) [1, p. 132–134]. It follows that \(T = \bigcup_{i=1}^\infty T_i \) is also Prüfer [2, p. 260], \(T \) has quotient field \(K \), and \(P = \bigcap_{i=1}^\infty V_i \). Now
suppose \(W \) is a valuation ring between \(T \) and \(K \). Since \(W \) contains \(T_n \), \(W \) contains some \(V_i \cap K_n \). If \(W \) contains \(V_1 \cap K_n \) for all \(n \), then \(W \) contains \(V_1 \) so either \(W = V_1 \) or \(W = K \). If \(V_1 \cap K_n \subseteq W \), then for \(s \geq n \), let \(W_s = W \cap K_s \). We know that \(V_j \cap K_s \subset W_s \) for some \(j < s \). But, for \(j \geq n \), \(V_j \cap K_s \cap K_n = V_1 \cap K_n \), so \(W_s \) is contained in \(V_j \cap K_s \) for some \(j < n \). Since \(V_j \) has rank \(j \), we see that \(W_s \) has rank \(< n \). It follows that \(W = \bigcup_{s=n}^{\infty} W_s \) also has rank less than \(n \).

References