Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cogenerator endomorphism rings


Author: Ronald L. Wagoner
Journal: Proc. Amer. Math. Soc. 28 (1971), 347-351
MSC: Primary 16.40
DOI: https://doi.org/10.1090/S0002-9939-1971-0276267-1
MathSciNet review: 0276267
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ R$ is a ring and $ P$ is a finitely generated projective right $ R$-module, what properties of $ R$ does the $ R$-endomorphism ring of $ P$ inherit? Rosenberg and Zelinsky have shown that if $ R$ is quasi-Frobenius, and $ P$ also has every simple epimorphic image isomorphic to a submodule, then the $ R$-endomorphism ring of $ P$ is also quasi-Frobenius. In this paper we show that if $ R$ is a cogenerator ring, and $ P$ is a finitely generated projective right $ R$-module with every simple epimorphic image isomorphic to a submodule of $ P$, then the $ R$-endomorphism ring of $ P$ is also a cogenerator ring.


References [Enhancements On Off] (What's this?)

  • [1] K. Hirata, Some types of separable extensions of rings, Nagoya Math. J. 33 (1968), 107-115. MR 38 #4524. MR 0236226 (38:4524)
  • [2] T. Kato, Self-injective rings, Tôhoku Math. J. (2) 19(1967), 485-495. MR 37 #247. MR 0224648 (37:247)
  • [3] T. Onodera, Über Kogeneratoren, Arch. Math. (Basel) 19 (1968), 402-410. MR 38 #2170. MR 0233849 (38:2170)
  • [4] B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373-387. MR 34 #4305. MR 0204463 (34:4305)
  • [5] A. Rosenberg and D. Zelinsky, Annihilators, Portugal. Math. 20(1961), 53-65. MR 24 #A1296. MR 0131446 (24:A1296)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.40

Retrieve articles in all journals with MSC: 16.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0276267-1
Keywords: Injective cogenerator, injective envelope, endomorphism ring, congenerator ring, basic idempotent, finitely generated projective module
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society