Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of a theorem of Jacobson


Author: Susan Montgomery
Journal: Proc. Amer. Math. Soc. 28 (1971), 366-370
MSC: Primary 16.58
DOI: https://doi.org/10.1090/S0002-9939-1971-0276272-5
MathSciNet review: 0276272
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A well-known theorem of Jacobson asserts that a ring $ R$ in which $ {x^{n(x)}} = x$ for each $ x$ in $ R$ must be commutative. This paper gives a description of a ring with involution in which the above condition is imposed only on the symmetric elements. In particular, if $ R$ is primitive, $ R$ is either commutative or the $ 2 \times 2$ matrices over a field, and, in general, any such $ R$ is locally finite and satisfies a polynomial identity of degree 8.


References [Enhancements On Off] (What's this?)

  • [1] W. E. Baxter and W. S. Martindale III, Rings with involution and polynomial identities, Canad. J. Math. 20 (1968), 465-473. MR 36 #5168. MR 0222116 (36:5168)
  • [2] I. N. Herstein, Special simple rings with involution, J. Algebra 6 (1967), 369-375. MR 35 #1633. MR 0210747 (35:1633)
  • [3] -, Topics in ring theory, Univ. of Chicago Press, Chicago, Ill., 1969. MR 0271135 (42:6018)
  • [4] I. N. Herstein and S. Montgomery, A note on division rings with involutions, Michigan Math. J. 18 (1971), 75-79. MR 0283017 (44:250)
  • [5] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R.I., 1956. MR 18, 373. MR 0081264 (18:373d)
  • [6] W. S. Martindale III, Jordan homomorphisms of the symmetric elements of a ring with involution, J. Algebra 5 (1967), 241. MR 0210750 (35:1636)
  • [7] -, Rings with involution and polynomial identities, J. Algebra 11 (1969), 186-194. MR 0234990 (38:3302)
  • [8] J. M. Osborn, Jordan algebras of capacity two, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 582-588. MR 35 #6727. MR 0215892 (35:6727)
  • [9] -, (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.58

Retrieve articles in all journals with MSC: 16.58


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0276272-5
Keywords: Rings with involution, commutativity, polynomial identity, algebraic algebras
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society