IDEALS IN THE MODULAR GROUP RING
OF A p-GROUP

E. T. HILL

Abstract. We show that if G has order p^n then the group ring has a chain of p^n+1 ideals and that the radical powers are canonical in the lattice of ideals. We then prove that if G is abelian, G is determined by the lattice of ideals.

This paper concerns the lattice of ideals in the group ring of a finite p-group over the integers modulo p, for p a prime. This field is written as K and the group ring as KG. In [1] it is shown that if G and H are abelian p-groups such that KG is isomorphic to KH, then G is isomorphic to H. We extend this result to the following:

Theorem. If G and H are abelian p-groups such that the lattice of ideals of KG is isomorphic to the lattice of ideals of KH, then G is isomorphic to H.

Let \mathfrak{R} be the radical of KG and \mathfrak{U} be a vector space in KG such that $\mathfrak{R}^{u+1} \subseteq \mathfrak{U} \subseteq \mathfrak{R}^u$. If α is in \mathfrak{U} and g is a member of G, then $g\alpha = \alpha g \equiv \alpha \mod \mathfrak{R}^u$ so that \mathfrak{U} is an ideal in KG. Hence if $\mathfrak{R}^u/\mathfrak{R}^{u+1}$ has dimension t_u, the lattice of ideals which are contained in \mathfrak{R}^u and contain \mathfrak{R}^{u+1} is isomorphic to the lattice of subvector spaces of the vector space of dimension t_u over K. Therefore, if G has order p^n, KG has a chain of p^n+1 ideals. By the modularity of the lattice of ideals, each ideal of dimension m, for $0 < m < p^n$, contains an ideal of dimension $m-1$ and is contained in an ideal of dimension $m+1$.

Lemma 1. If \mathfrak{S} and \mathfrak{S}' are ideals in KG such that \mathfrak{S} covers \mathfrak{S}', then $\alpha(g-1)$ is in \mathfrak{S}' for all α in \mathfrak{S} and g in G.

Proof. If \mathfrak{S} covers \mathfrak{S}', then $\mathfrak{S}/\mathfrak{S}'$ has dimension one. If α is in \mathfrak{S} and not in \mathfrak{S}', then the members of $\mathfrak{S}/\mathfrak{S}'$ are $k\alpha + \mathfrak{S}'$ for k in K. Hence for each g in G, $\alpha g \equiv k\alpha \mod \mathfrak{S}'$ for some k. If $k \neq 1$, then $g-k$ is a unit in KG so that $\alpha (g-k) \equiv 0 \mod \mathfrak{S}'$ implies $\alpha \equiv 0 \mod \mathfrak{S}'$. Therefore, $\alpha(g-1)$ is in \mathfrak{S}' for all α in \mathfrak{S} and g in G.

Lemma 2. The intersection of the ideals covered by \mathfrak{R}^u is \mathfrak{R}^{u+1}.

Proof. Let $\mathfrak{R}^u/\mathfrak{R}^{u+1}$ have dimension t_u and let $N^1_{t_u}, \ldots, N^n_{t_u}$ be a basis for $\mathfrak{R}^u/\mathfrak{R}^{u+1}$. For each fixed j such that $1 \leq j \leq t_u$, let \mathfrak{S}_j be the
collection of members of KG of the form $\sum a_iN_i + \mathfrak{F}^{w+1}$ with $a_i = 0$. Clearly \mathfrak{g}_j is an ideal, \mathfrak{F}^w covers \mathfrak{g}_j, and the intersection of the \mathfrak{g}_j as j ranges from 1 to t_w is \mathfrak{F}^{w+1}. Hence the intersection is contained in \mathfrak{F}^{w+1}.

By Lemma 1, if \mathfrak{g} is any ideal which is covered by \mathfrak{F}^w, then $\alpha(g - 1)$ is in \mathfrak{g} for all g in G and α in \mathfrak{F}^w. Since \mathfrak{F}^{w+1} is generated by elements of the form $\alpha(g - 1)$, \mathfrak{F}^{w+1} is contained in any ideal which is covered by \mathfrak{F}^w. Hence \mathfrak{F}^{w+1} is contained in the intersection and the lemma is proved.

Using the results of [2] it can be shown that the dual of Lemma 2 holds; that is, the join of the ideals which cover \mathfrak{F}^{w+1} is \mathfrak{F}^w.

The \mathfrak{M}-series for G [3] is defined as follows: $\mathfrak{M}_1 = G$; for $i > 1$, $\mathfrak{M}_i = \langle [\mathfrak{M}_{i-1}, G], \mathfrak{M}_{i-1}^{p^{i/p}} \rangle$ where (i/p) is the least integer not greater than i/p and $\mathfrak{M}_k^{p^{i/p}}$ is the set of all pth powers of members of \mathfrak{M}_k.

LEMMA 3. If the lattice of ideals of KG is isomorphic to the lattice of ideals of KH, then for each i, $\mathfrak{M}_i(G)/\mathfrak{M}_{i+1}(G)$ is isomorphic to $\mathfrak{M}_i(H)/\mathfrak{M}_{i+1}(H)$.

Proof. By Lemma 2, \mathfrak{F}^w is canonical in the lattice of ideals; therefore t_w, the dimension of $\mathfrak{F}^w/\mathfrak{F}^{w+1}$, is determined by the lattice of ideals. By [3, Theorem 3.7], determining all the t_w is equivalent to determining the d_i, where $\mathfrak{M}_i/\mathfrak{M}_{i+1}$ has order p^{d_i}. Since $\mathfrak{M}_i/\mathfrak{M}_{i+1}$ is elementary abelian, the quotient is determined by d_i.

The proof of the theorem is immediate since, as noted in [4], an abelian group is determined by its \mathfrak{M}-series.

REFERENCES

Cornell College, Mount Vernon, Iowa 52314