A NOTE ON TWO-SIDED IDEALS IN C^*-ALGEBRAS\(^1\)

JOHN BUNCE

Abstract. An elementary proof is given of the fact that $(I+J)^+ = I^+ + J^+$ for I and J closed two-sided ideals in a C^*-algebra.

In this note we give a short and elementary proof of the following theorem, which was proposed as a problem by J. Dixmier [1, Problem 1.9.12] and first proved by E. Störmer [4].

Theorem. Let A be a C^*-algebra. If I and J are uniformly closed two-sided ideals in A then $(I+J)^+ = I^+ + J^+$.

Here I^+ denotes the set of positive elements in I. To prove the theorem we may assume that A has an identity, denoted by e. In [4] Störmer proved the theorem by using some results of E. G. Effros [2] and some quite delicate calculations using the functional calculus to prove the following lemma, from which the theorem follows by a straightforward induction argument.

Lemma. With the assumptions as in the theorem, let a belong to $(I+J)^+$, and let $e > 0$ be given. Then there exists b in I^+ and c in J^+ such that $0 \leq a - b - c \leq ee$.

A SHORT PROOF OF THE LEMMA. Let a belong to $(I+J)^+$. Then $a = f + g$ for some f in I and g in J. Since $a = a^*$, we may assume that $f = f^*$ and $g = g^*$. Let $h = |f| + |g| + ee$. Then h is invertible and $0 \leq a - h$. Let $d = a^{1/2}h^{-1/2}$. Then d is in A, and $0 \leq d^*d = h^{-1/2}ah^{-1/2} \leq h^{-1/2}hh^{-1/2} = e$. Thus $dd^* \leq e$, and $0 \leq a - d|f|d^* - d|g|d^* = edd^* \leq ee$. Since $d|f|d^*$ is in I^+ and $d|g|d^*$ is in J^+ the lemma is proved.

We note that G. K. Pedersen has given another proof of this theorem [3].

References

University of Kansas, Lawrence, Kansas 66044

Received by the editors May 11, 1970 and, in revised form, June 10, 1970.

AMS 1969 subject classifications. Primary 4665; Secondary 4660.

1 This was written while the author held an AFOSR postdoctorate.

Copyright © 1971, American Mathematical Society