Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unique factorization monoids and domains


Author: R. E. Johnson
Journal: Proc. Amer. Math. Soc. 28 (1971), 397-404
MSC: Primary 06.70; Secondary 20.00
DOI: https://doi.org/10.1090/S0002-9939-1971-0277453-7
MathSciNet review: 0277453
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is the purpose of this paper to construct unique factorization (uf) monoids and domains. The principal results are: (1) The free product of a well-ordered set of monoids is a uf-monoid iff every monoid in the set is a uf-monoid. (2) If $ M$ is an ordered monoid and $ F$ is a field, the ring $ F[[M]]$ of all formal power series with well-ordered support is a uf-domain iff $ M$ is naturally ordered (i.e., whenever $ b < a$ and $ aM{ \bigcap ^b}M \ne \emptyset $, then $ aM \subset bM)$.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Cohn, Factorization in non-commutative power series rings, Proc. Cambridge Philos. Soc. 58 (1962), 452-464. MR 25 #2092. MR 0138649 (25:2092)
  • [2] -, Hereditary local rings, Nagoya Math. J. 27 (1966), 223-230. MR 33 #5663. MR 0197498 (33:5663)
  • [3] P. Conrad, Generalized semigroup rings, J. Indian Math. Soc. 21 (1957), 73-95. MR 20 #887. MR 0094369 (20:887)
  • [4] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York; Addison-Wesley, Reading, Mass., 1963. MR 30 #2090. MR 0171864 (30:2090)
  • [5] R. E. Johnson, Free products of ordered semigroups, Proc. Amer. Math. Soc. 19(1968), 697-700. MR 37 #2864. MR 0227279 (37:2864)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06.70, 20.00

Retrieve articles in all journals with MSC: 06.70, 20.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0277453-7
Keywords: Free products of monoids, unique factorization monoids, unique factorization domains, noncommutative power series rings
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society