ON THE CONJUGACY OF INJECTORS

GRAHAM A. CHAMBERS

Abstract. In their paper, *Injektoren endlicher auflösbarer Gruppen*, Fischer, Gaschütz and Hartley ask the following question. If \(\mathcal{F} \) is a normal subgroup closed class of groups and if \(G \) is a finite solvable group which possesses \(\mathcal{F} \)-injectors, is it true that any two \(\mathcal{F} \)-injectors of \(G \) are conjugate in \(G \)? A partial answer is given. It is proven that if \(G \) has \(p \)-length 1 for each prime \(p \), then the answer to this question is yes.

1. Introduction. Fitting classes and injectors were introduced by Fischer, Gaschütz and Hartley [2]. A Fitting class \(\mathcal{F} \) is an isomorphism closed class of groups satisfying \(f_1: G \in \mathcal{F}, N \triangleleft G \) implies \(N \in \mathcal{F} \), \(f_2: N_1, N_2 \triangleleft G, N_1, N_2 \in \mathcal{F} \) implies \(N_1 N_2 \in \mathcal{F} \). If \(G \) is a group, \(V \in G \) is an \(\mathcal{F} \)-injector of \(G \) provided \(V \triangleleft G \) implies \(V \cap N \) is \(\mathcal{F} \)-maximal in \(N \). Satz 1 [2] states that if \(\mathcal{F} \) is a Fitting class and \(G \) is a finite solvable group, then \(G \) possesses \(\mathcal{F} \)-injectors and any two are conjugate. At the close of [2] the authors ask if the conjugacy of injectors can be proven using only the first of the defining properties of a Fitting class. That is, if \(\mathcal{F} \) is an isomorphism closed class of groups satisfying \(f_1 \) and if \(G \) is a finite solvable group which possesses \(\mathcal{F} \)-injectors, is it true that any two \(\mathcal{F} \)-injectors of \(G \) are conjugate? A partial answer is given. We prove that if \(G \) has \(p \)-length 1 for each prime \(p \), then the answer to this question is yes.

2. \(p \)-normally embedded subgroups. In proving our result we will use the concept of a \(p \)-normally embedded subgroup. \(V \triangleleft G \) is said to be \(p \)-normally embedded in \(G \) if a Sylow \(p \)-subgroup \(V_p \) of \(V \) is also Sylow in some normal subgroup of \(G \). This concept was introduced by Hartley [3] and has also been studied in [1]. We are going to need the following theorem which is essentially a restatement of Theorem 2.6 of [1].

Theorem 1. Let \(G \) be a finite solvable group and suppose \(V \triangleleft G \) is \(p \)-normally embedded in \(G \) for each prime \(p \). Suppose \(W \triangleleft G \) and that for each prime \(p \) the Sylow \(p \)-subgroups of \(W \) are conjugate to those of \(V \). Then \(V \) and \(W \) are conjugate.

We are also going to need the following theorem which will be used...
to show that if G has p-length 1 for each prime p, then the G-injectors of G are p-normally embedded in G.

Theorem 2. Let p be a prime and let G be a p-solvable finite group. Then G has p-length 1 if and only if each p-subgroup of G is Sylow in some subnormal subgroup of G.

Proof. Suppose G has p-length 1 and that P is a p-subgroup of G. Let $K = O_p(G)$ and consider G/K. PK/K is a p-subgroup of G/K and, if $K \neq 1$, PK/K is Sylow in some $L/K < G/K$ by induction. But then P is Sylow in $L < G$ as required. Thus we may assume $K = 1$. Then G has a normal Sylow p-subgroup P^* and $P < P^* < G$ so that $P < G$.

To prove the converse we suppose each p-subgroup of G is Sylow in some subnormal subgroup of G. If $N < G$ and P/N is a p-subgroup of G/N, then there is a p-subgroup P^* of G such that $P = P^*N$. By assumption P^* is Sylow in some $L < G$ so that $P/N = P^*N/N$ is Sylow in $LN/N < G/N$. Thus by induction G/N has p-length 1 for any $1 \neq N < G$. If $O_p(G) \neq 1$, then we are done. Otherwise we can assume G has a unique minimal normal subgroup K which is a p-group. If $\Phi(G) \neq 1$, then $G/\Phi(G)$ has p-length 1 and hence so does G. Thus we may assume $\Phi(G) = 1$ so that K is complemented. Assume $MK = G$ and $M \cap K = 1$. If M is p', then K is Sylow p in G and we are done. Suppose then that $1 \neq M_p$ is Sylow p in M. By assumption M_p is also Sylow in some $L < G$. Since K is a p-group and $M_p \cap K = 1$, L is a proper subgroup of G. But then there exists a proper normal subgroup L^* of G such that $M_p \leq L \leq L^*$. Since K is the unique minimal normal subgroup of G, $K \leq L^*$. Then $M_pK \leq L^*$ so that L^* has p' index. Now each p-subgroup of L^* is Sylow in some $R < G$ and so is Sylow in $L^* \cap R < L^*$. Thus L^* has p-length 1 by induction. Since L^* has p' index this implies G has p-length 1. Q.E.D.

3. The main theorem.

Theorem 3. Suppose G has p-length 1 for each prime p and suppose V and W are G-injectors of G where G is an isomorphism closed class of groups satisfying f. Then

1. V is p-normally embedded in G for each prime p.
2. V and W are conjugate.

Proof. The proof is by induction on $|G|$. We assume both statements have been shown to hold whenever $|G| < n$. Now assume $|G| = n$. Our first step is to show that $|V| = |W|$. Let M be a maximal normal subgroup of G. $V \cap M$ and $W \cap M$ are each G-injectors of
Let V_p and W_p denote Sylow p-subgroups of V and W respectively. Our second step is to show that V_p and W_p are conjugate. If both V_p and W_p are Sylow in G, this is clear. Suppose then that V_p is not Sylow in G. From Theorem 2 we know V_p is Sylow in some proper subnormal subgroup L of G. $V \cap L$ and $W \cap L$ are each \mathfrak{F}-injectors of L and so they are conjugate by induction. Choose g such that $V \cap L = (W \cap L)^g \leq W^g$. Then V_p is Sylow in $V \cap L \leq W^g$ so that V_p is contained in some conjugate of W_p. Since V and W have the same order so do V_p and W_p and so we conclude that V_p and W_p are conjugate.

The next step is to show that V is \mathfrak{F}-normally embedded in G. By Theorem 2, V_p is Sylow in some $L \triangleleft G$. If $L = G$, then V_p is Sylow in G so that V is \mathfrak{F}-normally embedded in G. If L is proper then there is a proper normal subgroup H of G such that $V_p \leq L \leq H$. $V \cap H$ is an \mathfrak{F}-injector of H and V_p is Sylow in $V \cap H$. Since $H \triangleleft G$, $V \cap H$ is \mathfrak{F}-normally embedded in H by induction. That is, V_p is Sylow in some normal subgroup K of H. But then V_p is Sylow in $(V_p)^H \leq K$. Suppose now that $\alpha \in \text{Aut}(H)$. Then $(V \cap H)^\alpha$ is again an \mathfrak{F}-injector of H and since $|H| < |G|$, $(V \cap H)^\alpha$ is conjugate to $V \cap H$ in H by induction. In particular $(V_p)^\alpha$ is conjugate to V_p in H. This shows that $(V_p)^H$ is in fact characteristic in $H \triangleleft G$. But then V_p is Sylow in $(V_p)^H \triangleleft G$ so that V is \mathfrak{F}-normally embedded in G as required.

As a final step we invoke Theorem 1 to complete the proof that V and W are conjugate. Q.E.D.

References

University of Alberta, Edmonton, Alberta, Canada