KLEIN BOTTLES IN CIRCLE BUNDLES

JOHN W. WOOD

Abstract. We prove that the Klein bottle embeds in the total space \(E \) of an orientable \(S^1 \)-bundle over an orientable 2-manifold \(M \) if and only if \(M = S^2 \) and \(E = S^1 \times S^2 \) or the lens space \(L(4, 1) \).

In this note we apply results of [1] to generalize a result given there concerning the embedding of the Klein bottle.

Proposition. The Klein bottle embeds in the total space \(E \) of an orientable \(S^1 \)-bundle over an orientable 2-manifold \(M \) if and only if \(M = S^2 \) and \(E = S^1 \times S^2 \) or the lens space \(L(4, 1) \).

To show \(M = S^2 \) we use the following result of [1]:

Theorem [1, §4.1]. Let \(i: K \rightarrow E \) be an embedding of a nonorientable \((n-1)\)-manifold \(K \) in an orientable \(n \)-manifold \(E \). Suppose that \(\alpha \in \pi_1(K) \) reverses orientation. Then for \(\beta \in \pi_1(E) \), \(\beta^{-1}it(\alpha)\beta \in it(\pi_1(K)) \) implies \(\beta \in it(\pi_1(K)) \).

Assume \(M \neq S^2 \), so \(\pi_2(M) = 0 \). In the exact sequence of the fibration

\[\cdots \rightarrow 0 \rightarrow \pi_1(S^1) \rightarrow \pi_1(E) \rightarrow \pi_1(M) \rightarrow 0 \]

the generator of \(\pi_1(S^1) \) is mapped to an element \(g \) in the center of \(\pi_1(E) \). (Since \(E \) is trivial over the 1-skeleton of \(M \), the inverse image of any circle in \(M \) is a torus in \(E \). Hence \(g \) commutes with a basis for \(\pi_1(E) \).) By the theorem \(g \) is in the image of \(it \). Let \(\pi_1(K) = \{ \alpha, \beta: \alpha \beta \alpha^{-1} = \beta^{-1} \} \); \(\alpha \) is the orientation reversing element. Then \(g = it(\alpha^j \beta^k) \) for some integers \(j, k \). Since \(\alpha \beta \alpha^{-1} = \beta^{-k} \), we have

\[gi_1(\alpha^{-j+1})gi_1(\alpha^{-j-1}) = it(\alpha^j \beta^k \alpha^{-j+1} \alpha^j \beta^k \alpha^{-j-1}) = 1. \]

Therefore \(g^2 = it(\alpha^{2j}) \). \(pt(g) = 0 \) and \(\pi_1(M) \) is torsion free, so \(ptit(\alpha) = 0 \). Therefore \(it(\alpha) = g^m \) and is in the center of \(\pi_1(E) \). But then by the theorem \(it \) is onto. Thus \(ptit(\beta) \) generates \(\pi_1(M) \) which contradicts \(M \neq S^2 \).

To complete the proof of the proposition recall that the total space \(E \) of an orientable \(S^1 \)-bundle over \(S^2 \) is the lens space \(L(k, 1) \) or \(S^1 \times S^2 \) (the case \(k = 0 \)). By [1, §6] a nonorientable surface of genus \(g \) embeds...
in $L(k, 1)$ if and only if k is even, $g \equiv k/2 \pmod{2}$, and $g \geq k/2$. Thus the Klein bottle, which has genus 2, embeds only in $L(4, 1)$ and $S^1 \times S^2$.

If $S^1 \times S^2$ is pictured as a family of 2-spheres parameterized by θ, $0 \leq \theta < 2\pi$, then the surface swept out by a meridian rotated about the poles by $\theta/2$ is a Klein bottle.

In the x, y-plane let S be the square with vertices at $(\pm 1, 0)$ and $(0, \pm 1)$. $L(4, 1)$ is obtained from the suspension from $(0, 0, 1)$ of S in \mathbb{R}^3 by identifying certain points of the boundary, cf. [2, p. 223]. The surface $z = xy$ gives an embedding of the Klein bottle.

REFERENCES

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540