A CLASS OF HYPO-DIRICHLET ALGEBRAS

A. G. BRANDSTEIN

Abstract. A method is given of constructing a new class of hypo-Dirichlet algebras of given real codimension.

1. Introduction. Let X be a compact Hausdorff space and A a uniform algebra on X, i.e., a uniformly closed subalgebra of $C(X)$, the space of continuous functions on X, that contains the constants and separates points on X. Denote the real parts of the functions in A by $\text{Re } A$, the set of invertible elements of A by A^{-1}, the set of logarithms of moduli of functions in A by $\log A$. Let $C(X)$ denote the space of real continuous functions on X. A uniform algebra on X is called a hypo-Dirichlet algebra if, in addition, there exist f_1, \ldots, f_n in A^{-1}, such that the (real) vector space spanned by $\text{Re } A$ and $\log |f_1|, \ldots, \log |f_n|$ is dense in $C(X)$. The minimal number of such f_i required shall be called the codimension of $\text{Re } A$. Hypo-Dirichlet algebras were first studied by Wermer [6], and further investigated by Ahern and Sarason [1]. The object here is to exhibit a class of examples of such algebras. The proofs of several of the lemmas in this paper are modeled after [2].

2. The algebra A. Let Γ be the annulus $\{Z: 1 \leq |Z| \leq 2\}$, $\gamma_1 = \{Z: |Z| = 1\}$ and $\gamma_2 = \{Z: |Z| = 2\}$. Let Ψ be a homeomorphism of γ_1 on γ_2 which is orientation-preserving and singular, i.e., maps a Borel set of one-dimensional Lebesgue measure 0 onto a set of measure 4π. Let $B = \{f \in C(\Gamma): f$ is analytic in $\text{int } (\Gamma)\}$, and $A = \{f \in B: f(Z) = f(\Psi(Z))\}$ for all $Z \in \gamma_1$. Let $A_\Psi = A$ restricted to γ_1. Then A_Ψ is a uniformly closed algebra of continuous functions on γ_1, which contains the constants.

Theorem. A_Ψ is a hypo-Dirichlet algebra on γ_1, and $\text{Re } A_\Psi$ has codimension 1 in $C_\mathbb{R}(\gamma_1)$.

Definition 1. A (complex Borel) measure ν on $\gamma_1 \cup \gamma_2$ is odd if for each Borel set $E \subset \gamma_1$, $\nu(E) = -\nu(\Psi(E))$.

Definition 2. H denotes the class of measures of the form: $g(Z) dZ$ on $\gamma_1 \cup \gamma_2$, where g is any function in the L^1 closure of B restricted to $\gamma_1 \cup \gamma_2$.

Received by the editors July 23, 1969.
Key words and phrases. Real codimension, singular homeomorphism, cohomology.

Copyright © 1971, American Mathematical Society
Definition 3. W is the space of measures $\mu + \nu$ with $\mu \in H$, ν odd. \overline{W} is the weak * closure of W in the space of measures on $\gamma_1 \cup \gamma_2$.

Definition 4. A measure λ on $\gamma_1 \cup \gamma_2$ annihilates A if $\int f \, d\lambda = 0$, all $f \in A$.

Clearly, every measure in W annihilates A. Also, if λ annihilates A, then $\lambda \in \overline{W}$.

Note. The measure $-i \cdot (dZ/Z) = d\theta$ is a real measure which annihilates B, and it is readily seen that the only real annihilators of B are of the form: $\alpha \cdot d\theta$, α a real constant.

Lemma 1. If $\mu \in H$, ν odd, then $\|\nu\| \leq 16\|\mu + \nu\|$.

Proof. Let E be any Borel subset of γ_1 and let m represent Lebesgue measure. Then there are disjoint sets F and G with $E = F \cup G$, $m(F) = m(\Psi(G)) = 0$. Let $K = \|\mu + \nu\|$, then $|v(F)| = |\nu(F) + \mu(F)| \leq K$, since μ is absolutely continuous. $|v(G)| = |\nu(G)| = |\mu + \nu(\Psi(G))| \leq K$ for the same reason. Hence $\|\nu\| \leq 16 K$. q.e.d.

Lemma 2. Then $W = \overline{W}$.

Proof. $Q = \{\mu + \nu : \mu \in H$, ν odd, $\|\mu\| \leq 1$, $\|\nu\| \leq 1\}$ is compact. The Krein-Smulian theorem [4, p. 429] then implies $W = \overline{W}$. q.e.d.

Lemma 3. If ν is an odd measure, then ν is absolutely continuous with respect to arc length on $\gamma_1 \cup \gamma_2$ iff $\nu = 0$.

Proof. Suppose ν is absolutely continuous. Let E be a Borel subset of γ_1. Then there are disjoint sets F and G with $E = F \cup G$, $m(F) = m(\Psi(G)) = 0$. Hence $\nu(F) = 0$, since ν is absolutely continuous $\nu(G) = -\nu(\Psi(G)) = 0$ for the same reason. Hence $\nu(E) = 0$. q.e.d.

Lemma 4. Every real annihilator, λ, of A has the form: $\lambda = \nu + \alpha \cdot d\theta$, where ν is odd and α is a real scalar.

Proof. Since W is weak * closed, we conclude that if λ is a measure on $\gamma_1 \cup \gamma_2$, which annihilates A, then $\lambda = \mu + \nu, \mu \in H$, ν odd. Write $\mu = \mu_1 + i\mu_2, \nu = \nu_1 + i\nu_2$ with μ_1, μ_2, ν_1, and ν_2 real. If λ is real $\mu_2 + \nu_2 = 0$. Hence ν_2 is absolutely continuous, hence 0. Then $\mu = \mu_1$ and $\lambda = \mu_1 + \nu_1$. q.e.d.

It follows, in particular, that $\text{Re} \ A$ has codimension ≤ 1 in $C_R(\gamma_1)$.

Lemma 5. A separates the points of γ_1. Further, given Z_1, Z_2 with $1 \leq |Z_1| \leq 2, 1 \leq |Z_2| < 2$ and $Z_1 \neq Z_2$, then there exists an f in A such that $f(Z_1) \neq f(Z_2)$.

Proof. Let τ_1, τ_2 be two points of γ_1 and let $\delta_{\tau_1}, \delta_{\tau_2}$ be the point masses at τ_1, τ_2 respectively. Unless A separates τ_1 and τ_2, $\delta_{\tau_1} - \delta_{\tau_2}$ would
be a real annihilating measure which is not in \(W \). Now suppose \(Z_1, Z_2 \) are interior to the annulus and \(A \) fails to separate them. Let \(\sigma_1, \sigma_2 \) be the harmonic measures for \(Z_1, Z_2 \) respectively. Then \(\sigma_1 - \sigma_2 \) would be a real annihilating measure. Hence, \(\sigma_1 - \sigma_2 = \nu + \alpha \cdot d\theta \), \(\nu \) odd. However \(\sigma_1 - \sigma_2 \) is absolutely continuous, therefore \(\sigma_1 - \sigma_2 = \alpha \cdot d\theta \), contradiction. Finally, if \(Z_1 \in \gamma_1 \) and \(Z_2 \) is interior, a similar argument applies. q.e.d.

Let \(T \) be the space obtained from the closed annulus \(1 \leq |Z| \leq 2 \) by identifying \(Z \) and \(\Psi(Z) \) if \(Z \in \gamma_1 \). Then functions in \(A \) may be regarded as continuous functions on \(T \). Evidently \(T \) is topologically a torus since \(\Psi \) is orientation-preserving.

Lemma 6. The space of maximal ideals of \(A \) (\(A_\Psi \)) is homeomorphic to \(T \).

Proof. It must be shown that, if \(h \) is a homomorphism of \(A \) onto the complex numbers, then \(h \) is evaluation at some point of \(T \). If \(h \) is not evaluation at any point of \(T \), then for each \(Z, 1 \leq |Z| \leq 2 \), there is an \(f_Z \in A \), with \(h(f_Z) = 0, f_Z(Z) \neq 0 \). Since \(T \) is compact, we can select a finite number of functions \(f_1, \ldots, f_n \) in \(A \) such that \(h(f_i) = 0, i = 1, \ldots, n \). Let \(\Delta_i \) be open sets such that \(\bigcup_i \Delta_i = \{ Z : 1 \leq |Z| \leq 2 \} \) and \(f_i \neq 0 \) in \(\Delta_i \). Let \(\sigma \) be a representing measure for \(h \) on \(\gamma_1 \cup \gamma_2 \), i.e.,

\[
\int f \cdot d\sigma = h(f \cdot f_i) = h(f) \cdot h(f_i) = 0, i = 1, \ldots, n, f \in A.
\]

Thus \(f_i \cdot d\sigma \) annihilates \(A \), therefore \(f_i \cdot d\sigma = d\mu_i + d\nu_i, \mu_i \in H, \nu_i \) odd. Hence, \(f_i \cdot d\mu_i = f_i \cdot d\nu_i \) and \(f_i \cdot d\mu_i = f_i \cdot d\nu_i \). Since the right side is odd and the left side is absolutely continuous both sides vanish. Let \(\Phi \), denote the function in \(H \) such that \(d\mu_i = \Phi_i \cdot dZ \). Then \(f_i \cdot \Phi_i = f_i \cdot \Phi_j \) a.e. on \(\gamma_1 \cup \gamma_2 \) and so \(f_i \cdot \Phi_i = f_i \cdot \Phi_j \) also for \(1 < |Z| < 2 \). We can therefore unambiguously define \(\Phi \) on \(1 \leq |Z| \leq 2 \) by \(\Phi(Z) = \Phi_i(Z) \cdot (f_i(Z))^{-1} \) for \(Z \in \Delta_i \). Then \(\Phi \in H \).

We define a measure \(\nu \) on \(\gamma_1 \cup \gamma_2 \) by \(d\nu = (f_i)^{-1} \cdot d\nu_i \) on \(\gamma_1 \cup \gamma_2 \) \(\cap \Delta_i \). Then \(\nu \) is well defined and odd. Then \(f_i \cdot d\sigma = f_i \cdot \Phi_i \cdot dZ + f_i \cdot d\nu_i \). Since \(f_i \neq 0 \) on \(\Delta_i \), we deduce \(d\sigma = \Phi_i \cdot dZ + d\nu_i \). But then \(1 = f_i \cdot d\sigma = \Phi_i \cdot dZ + f_i \cdot d\nu_i = 0 \). Contradiction. q.e.d.

Lemma 7. There is an \(f \in A^{-1} \) whose logarithm is not single valued on \(\Gamma \).

Proof. We regard \(A \) as an algebra of continuous functions on \(T \). The circle: \(|Z| = 3/2 \) gives rise to a one-cycle \(l_1 \) on \(T \). Let \(l_2 \) be another one-cycle on \(T \) so that \(l_1 \) and \(l_2 \) generate \(H_1(T, Z) \). By a theorem of Arens-Royden, [5], the quotient group \(A^{-1}/\text{exp}(A) \) is isomorphic to \(H^1(T, Z) \). If \(T \) is the torus, \(H^1(T, Z) \) is a free abelian group on two
generators. Let g_1, g_2 be two elements of A^{-1} representing these generators. Write $g_1 = e^{h_1}, g_2 = e^{h_2},$ where h_1, h_2 are (multi-valued) analytic functions on Γ. Let h_1 have period $2\pi i$ on l_1, h_2 have period $2\pi i$ on l_2. Then $m \cdot h_1 - n \cdot h_2$ has 0 period on l_2. Suppose it also had 0 period on l_1. Then $g_1^m \cdot g_2^{-n} = e^{h}$ for some $h \in A$. This contradicts the choice of g_1, g_2. Hence $m \cdot h - n \cdot h$ has period 0 on l. Therefore $f = g_1^m \cdot g_2^{-n}$ is the desired element of A^{-1}. q.e.d.

Proof of Theorem. We must show that there is an $f \in A^{-1}$ such that $\log |f| \in$ closure $\text{Re } A$. We claim the f of Lemma 7 is such a function. Define a linear functional L on $C_R(\gamma_1 \cup \gamma_2)$ by $L(U) = (1/2\pi) \int_{|z|=3/2} dv$ where v is the harmonic conjugate of U. Then L is continuous and linear. $L(g) = 0$ for $g \in \text{Re } A^{-1}$, but $L(\log |f|) \neq 0$ since $\int_{|z|=3/2} (\arg f) \neq 0$. Therefore $\log |f| \in$ closure $\text{Re } A^{-1}$. q.e.d.

Note. By identifying n circles instead of 2, in a similar manner, we can construct a hypo-Dirichlet algebra that has real part of codimension $n - 1$.

References

University of Connecticut, Storrs, Connecticut 06268