Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A note on Sobolev algebras


Author: Robert S. Strichartz
Journal: Proc. Amer. Math. Soc. 29 (1971), 205-207
MSC: Primary 46.38
MathSciNet review: 0275148
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions are given for the Sobolev space $ L_w^p = \{ f \in {L^p}({E^n}):{\mathfrak{F}^{ - 1}}(\hat f(\xi )w(\xi )) \in {L^p}\} $ to form an algebra under pointwise multiplication, when $ 1 \leqq p \leqq 2$. The conditions are verified for some examples.


References [Enhancements On Off] (What's this?)

  • [1] Richard J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610–634. MR 0291792
  • [2] Paul Krée, Sur les multiplicateurs dans \cal𝐹𝐿^{𝑝}, Ann. Inst. Fourier (Grenoble) 16 (1966), 31–89 (French). MR 0216244
  • [3] W. Littman, C. McCarthy, and N. Rivière, 𝐿^{𝑝}-multiplier theorems, Studia Math. 30 (1968), 193–217. MR 0231126
  • [4] Cora Sadosky and Mischa Cotlar, On quasi-homogeneous Bessel potential operators, Singular integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 275–287. MR 0383156
  • [5] E. M. Stein, Intégrales singulières et fonctions différentiable de plusieurs variables, Lecture Notes, Faculté des Sciences d'Orsay, 1967.
  • [6] Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46.38

Retrieve articles in all journals with MSC: 46.38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0275148-7
Keywords: Sobolev spaces, $ {L^p}$ multipliers, Sobolev algebras
Article copyright: © Copyright 1971 American Mathematical Society