Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On paracompactness in function spaces with the compact-open topology.


Author: Paul O’Meara
Journal: Proc. Amer. Math. Soc. 29 (1971), 183-189
MSC: Primary 54.28
DOI: https://doi.org/10.1090/S0002-9939-1971-0276919-3
MathSciNet review: 0276919
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A k-network $ \mathcal{P}$ for a space X is a family of subsets of X such that if $ C \subset U$, with C compact and U open, then there is a finite union R of members of $ \mathcal{P}$ such that $ C \subset R \subset U$. An $ {\aleph _0}$-space is a $ {T_3}$-space having a countable k-network and an $ \aleph $-space is a $ {T_3}$-space having a $ \sigma $-locally finite k-network. In this paper, it is shown that if X is an $ {\aleph _0}$-space and Y is a paracompact $ \aleph $-space, then $ \mathcal{C}(X,Y)$, with the compact-open topology is a paracompact $ \aleph $-space. The result implies that if X is separable metric and Y is metric, then $ \mathcal{C}(X,Y)$ is paracompact.


References [Enhancements On Off] (What's this?)

  • [1] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [2] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [3] E. Michael, $ {\aleph _0}$-spaces, J. Math. Mech. 15 (1966), 983-1002. MR 34 #6723. MR 0206907 (34:6723)
  • [4] -, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838. MR 15, 144. MR 0056905 (15:144b)
  • [5] A. Okuyama, $ \sigma $-spaces and closed mappings. I, Proc. Japan Acad. 44 (1968), 472-477. MR 37 #4791. MR 0229217 (37:4791)
  • [6] -, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1968), 236-254; correction, ibid. 10 (1969), 134. MR 37 #5846; MR 40 #6498. MR 0230283 (37:5846)
  • [7] P. O'Meara, $ \aleph $-spaces (to appear).
  • [8] -, A metrization theorem, Math. Nachr. 45 (1970), 69-72. MR 0279768 (43:5489)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.28

Retrieve articles in all journals with MSC: 54.28


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0276919-3
Keywords: Function spaces, compact-open topology, paracompact, $ \sigma $-locally finite family, k-network, network, $ {\aleph _0}$-space, $ \aleph $-space, $ \sigma $-space, compact-covering mapping, separable metric space, metric space
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society