TAME ARCS ON WILD CELLS

CHARLES L. SEEBECK III

Abstract. We prove here that, for \(n \geq 5 \), every cell in \(E^n \) contains a tame arc and that, for product cells \(B^{m-k} \times I^k \subset E^{m-k} \times E^k = E^n \), every \(k \)-dimensional polyhedron \(P \subset B^{m-k} \times I^k \) is tame in \(E^n \).

1. Introduction. Bing showed in [1] that every 2-cell in 3-dimensional Euclidean space contains a tame arc and in [2] that there is a 2-sphere that is wild but for which all subarcs are tame. We obtain here analogous results in higher dimensions (\(\geq 5 \)). First we show that for \(n \geq 5 \), any subarc of any \(k \)-cell in \(E^n \) can be approximated by subarcs tame in \(E^n \). Then we show that if \(C \) is any \((m-k) \)-cell in \(E^{n-k} \), \(I^k \subset E^k \) is the \(k \)-fold product of the unit interval \(I \), \(m \leq n - 2 \), and \(n \geq 5 \), then every sub \(k \)-cell of \(C \times I^k \subset E^{n-k} \times E^k \) is tame in \(E^n \). Since there are cells in this class of factored cells that are wild at every point [10] we have a generalization of Bing’s example [2] to higher dimensions.

2. The approximation theorems. First we give a few definitions. Let \(X \subset M \) be closed subsets of \(E^n \). Let \(d \) denote the usual metric on \(E^n \). A homeomorphism \(h \) of \(M \) is an \(\varepsilon \)-push of \((M, X) \) if there is an isotopy \(h_t \) of \(M \) such that \(h_0 = \text{Identity} \), \(h_1 = h \), \(d(h_t(x), x) < \varepsilon \) for each \(t \in I \) and each \(x \in M \), and \(h_t \) is the identity outside the \(\varepsilon \)-neighborhood of \(X \) in \(M \) for each \(t \). If \(P \) is a polyhedron and \(h : P \to E^n \) is an embedding we say that \(h \) is tame if there is a homeomorphism \(H \) of \(E^n \) such that \(H \circ h \) is piecewise linear (PL).

Lemma 1. Suppose \(X \) is a compact subset of \(E^n \), \(\text{Int} X = \emptyset \), \(X \) does not locally separate \(E^n \), \(G \) is a compact 1-dimensional subpolyhedron of \(E^n \), \(n \geq 4 \), and \(\varepsilon > 0 \). Then there is an \(\varepsilon \)-push \(h \) of \((E^n, G \cap X) \) such that \(h(G) \cap X = \emptyset \).

Proof. The proof is an immediate consequence of general position and Corollary 5.6 of [3].

Lemma 2. Suppose \(X \) is a compact subset of \(E^n \), \(\text{Int} X = \emptyset \), \(X \) does not locally separate \(E^n \), \(P \) is a 2-dimensional subpolyhedron of \(E^n \), \(n \geq 4 \),
and $\epsilon > 0$. Then there is an ϵ-push h of $(E^n, P \cap X)$ such that $h(P) \cap X$ is totally disconnected.

Proof. Let K be a triangulation of P and $\{K_i, i=1, 2, \ldots\}$ the sequence of ith derived barycentric subdivisions of K. We shall use Lemma 1 to construct an ϵ-push h of $(E^n, P \cap X)$ such that $h(U \cup h_i^q) \cap X = \emptyset$. Clearly h then satisfies the conclusion of Lemma 2.

Let $\epsilon_1 = \epsilon/2$ and apply Lemma 1 with (X, G, ϵ) replaced by $(X, |K_1|, \epsilon_1)$, obtaining an ϵ_1-push h_1 of $(E^n, K_1^1 \cap X)$ such that $h_1(K_1^1 \cap X) = \emptyset$. Let $\delta_1 = d(h_1(|K_1^1|), X)$ and η_1 be some positive number chosen depending on h_1. (See [8] or Theorem 3.4 of [7].) Set $\epsilon_2 = \min\{|\epsilon_1/2, \delta_1/2, \eta_1|\}$. As before we obtain an ϵ_2-push h_2 of $(E^n, h_1|K_2^1 \cap X)$ such that $h_2 \cdot h_1(|K_2^1| \cap X) = \emptyset$. Set $h_0 = h_2 \cdot h_1$. Continuing in this way we obtain a sequence $\{h_i\}$ of homeomorphisms of E^n. Since $\epsilon_i+1 < \epsilon_i/2$, $\lim_i h_i = h$ is an ϵ-map of E^n supported on a compact set. Because $\epsilon_i+1 < \delta_i/2$, $h(U \cup |K_i^1| \cap X = \emptyset$ and because the η_i are chosen sufficiently small depending on the h_i, h is a homeomorphism. Thus h is the required ϵ-push of (E^n, X).

Theorem 3. Let M be a PL m-manifold topologically embedded in E^n, G a 1-dimensional subpolyhedron of M, G' a subpolyhedron of G that is tame in E^n, $n \geq 5$, and $m \geq 2$. Then for each $\epsilon > 0$ there is an ϵ-embedding $\alpha: G \rightarrow M$ such that α is tame in E^n and $\alpha| G' = \text{inclusion} : G' \rightarrow E^n$.

Proof. It is sufficient to consider the case that M is a 2-cell, G is an arc, and $G' = \{\text{end points of } G\}$. Using Lemma 2 we shall construct an embedding $\alpha: G \rightarrow M$ fixed on G' such that $E^n - \alpha(G)$ is uniformly locally 1-connected (1-ULC). By Theorem 4.2 of [4], α is thus tame.

Let K be a triangulation of E^n and K_1, K_2, \ldots the sequence of ith derived barycentric subdivisions of K. It follows from general position and Lemma 2 that there is an $\epsilon/2$-push h_1 of $(E^n, G \cap |K_1^1|)$ such that $h_1(|K_1^1| \cap M$ is totally disconnected and $h_1(|K_1^1| \cap G = \emptyset$. Thus there is an $\epsilon/2$-embedding $\alpha_1: G \rightarrow M$ fixed on G' such that $\alpha_1(G) \cap |K_1^1| = \emptyset$. Now as in the proof of Lemma 2 we set $\epsilon_1 = \epsilon/2$, $\delta_1 = d(\alpha_1(G), h_1(|K_1^1|))$, $\eta_1 > 0$ chosen depending on α_1, $\eta'_1 > 0$ chosen depending on h_1, $\epsilon_2 = \min\{|\epsilon_1/2, \delta_1/4, \eta_1|\}$, and $\epsilon'_2 = \min\{|\epsilon_1/2, \delta_1/4, \eta'_1|\}$. Then using Lemma 2 we find an ϵ'_2-push h'_2 of $(E^n, \alpha_1(|K_2^1|) \cap M$ such that $h'_2 \cdot h_1(|K_2^1| \cap M$ is totally disconnected. Let $h_2 = h'_2 \cdot h_1$. We can again find an embedding $\alpha_2: G \rightarrow M$ such that $d(\alpha_2, \alpha_1|G) \cap h_2(|K_2^1|) = \emptyset$, and α_2 is fixed on G'. Continuing in this way we construct a sequence $\alpha_i: G \rightarrow M$ of ϵ_i-embeddings and a sequence $\{h_i\}$ of homeomorphisms of E^n. Because $\epsilon_i+1 < \epsilon_i/2$, the α_i converge to an ϵ-map $\alpha: G \rightarrow M$. The η_i can be picked so as to guarantee that α is an
ε-embedding. Similarly the \(h_i \) converge to an ε-push of \((E^n, M)\). Because \(\max \{ \epsilon_{i+1}, \epsilon_{i+1} \} \leq \delta_i/2^{i+1}, \alpha(G) \cap h(U^n_k, K^2_i) = \emptyset \). Thus \(h \alpha(G) \cap U^n_k, K^2_i = \emptyset \), and so \(E^n - h^{-1} \alpha(G) \) is 1-ULC. Therefore \(h^{-1} \alpha \) and hence \(\alpha \) is tame.

Corollary 3.1. Suppose \(N \) is a PL n-manifold, \(M \) is a PL m-manifold topologically embedded in \(N \), \(G \) is a 1-dimensional polyhedron, \(G' \subseteq G \) is a subpolyhedron, \(\beta: G \to M \) is an embedding such that \(\beta|G': G' \to N \) is tame, \(n \geq 5 \), and \(m \geq 2 \). Then for each \(\epsilon > 0 \) there is an embedding \(\alpha: G \to M \) such that \(d(\alpha, \beta) < \epsilon \), \(\alpha|G' = \beta|G' \), and \(\alpha: G \to N \) is tame.

Proof. First take an infinite triangulation of \(G - G' \) and approximate \(\beta \) by an embedding \(\beta': G \to M \) such that \(\beta'|G' = \beta|G' \) and \(\beta' \) is locally PL on \(G - G' \). Then apply Theorem 3 to a sequence of compact subpolyhedra of \(\beta'(G - G') \). Thus we obtain an embedding \(\alpha: G \to M \) such that \(\alpha|G' = \beta|G' \) and \(\alpha|G - G' \) is locally tame in \(E^n \). Thus \(\alpha: G \to N \) is tame (Theorem 4.2 of [4]).

Theorem 4. Suppose \(N \) is a PL n-manifold, \(M \) is a PL m-manifold topologically embedded in \(N \), every 2-complex of \(M \) can be approximated by a 2-complex in \(M \) that is tame in \(N \), and \(5 \leq m \leq n - 2 \). Then each \(k \)-dimensional polyhedron \(P \) topologically embedded in \(M \), \(k < m \), can be approximated in \(M \) by embeddings that are tame in \(N \).

Proof. It follows from [5] and either [6] or [9] that an approximation of \(P \) is tame if its complement is 1-ULC. Such an approximation is found by modifying the proof of Theorem 3. Let \(L \) be a triangulation of \(M \) and \(L_0, L_1, L_2, \ldots \) the sequence of barycentric subdivisions. Similarly let \(K_1, K_2, \ldots \) be the sequence of barycentric subdivisions of a triangulation of \(N \). Using techniques similar to those above it is possible to construct a homeomorphism \(h \) of \(N \) such that \(h(U(K^2_i)) \cap M = \emptyset \) and \(h(U(K^2_i)) \cap (U(Q_i) = \emptyset \) where \(Q_i \) is a close approximation of \(|L^2_i| \) for each \(i \) that is tame in \(N \). Now for each \(i \) we can find an arc \(A_i \subseteq M \) such that \(C_i = h(K^2_i) \cap M \subseteq A_i \) and \(A_i - C_i \) is locally tame in \(M \). Since \(M - C_i \) is 1-ULC, \(M - A_i \) is 1-ULC and hence \(A_i \) is tame. Using \(A_i \) we can construct, for each \(i \), a homeomorphism \(f_i \) of \(M \) moving points a distance depending on \(f_{i-1} \) so that \(f_i(P) \cap C_i = \emptyset \). Thus as in the proof of Lemma 2 and Theorem 3 we can construct an \(\epsilon \)-push \(f \) of \((M, P) \) such that \(f(P) \cap (U C_i) = \emptyset \). Thus \(N - f(P) \) is 1-ULC and the required approximation has been found.

It is evident that we have actually proved the following.

Addendum to Theorem 4. Under the hypotheses of Theorem 4 it is possible to find for each \(\epsilon > 0 \) an \(\epsilon \)-push \(f \) of \((M, P) \) such that \(f|P : P \to N \) is tame.
3. Subpolyhedra of factored cells. We say that an \(m\)-cell \(C \subseteq E^n\) factors \(k\)-times if for some homeomorphism \(h: E^m \rightarrow E^n\) and some \((m-k)\)-cell \(B \subseteq E^{n-k}\), \(h(C) = B \times I^k \subseteq E^{n-k} \times E^k\) where \(I^k\) is the \(k\)-fold product of the interval \(I\) naturally embedded in \(E^k\) and \(B \times I^k \subseteq E^{n-k} \times E^k\) is the product embedding.

Theorem 5. Suppose \(C\) is an \(m\)-cell topologically embedded in \(E^n\), \(C\) factors \(k\)-times, \(n \geq 5\), and \(m \leq n - 2\). Then every embedding of any compact \(k\)-dimensional polyhedron into \(C\) is tame in \(E^n\).

Proof. Let \(B\) be an \((m-k)\)-cell in \(E^{n-k}\), \(P\) a finite \(k\)-dimensional polyhedron topologically embedded in \(B \times I^k \subseteq E^{n-k} \times E^k\), \(n \geq 5\), and \(1 \leq k \leq m \leq n - 2\). It follows from \([5]\) and either \([6]\) or \([9]\) that \(P\) is tame in \(E^n\) if \(E^n - P\) is 1-ULC. However, \(E^n - P\) is 1-ULC if each 2-complex in \(E^n\) can be homotoped off \(P\) by arbitrarily small homotopies. Let \(K\) be a finite 2-complex. First find a very small homotopy of \(|K|\) such that for some subdivision \(K'\) each 2-cell of \(K'\) either projects onto a 0- or 1-simplex of \(E^{n-k}\) or else lies in \(E^{n-k} \times t\) for some \(t \in E^k\). Since \(n - k \geq (m-k) + 2E^{n-k} - B\) is locally 0-connected. Thus it follows that any 0- or 1-simplex in \(E^{n-k}\) can be homotoped off \(B\) by a small homotopy. Thus any 2-cell of \(K'\) that projects onto a 0- or 1-cell of \(E^{n-k}\) can be homotoped off \(B \times I^k\). Let \(\sigma\) be a 2-cell of \(K'\), \(t \in E^k\), and \(\sigma \subseteq E^{n-k} \times t\). For \(n - k \geq 4\) it follows from Lemma 2 that there is an \(\varepsilon\)-push \(h\) of \((E^{n-k} \times t, \sigma)\) such that \(h(\sigma) \cap (B \times t)\) is 0-dimensional. For \(n - k = 3\) we can use the techniques of the proof of Lemma 2 to find an embedding \(h: \sigma \rightarrow E^{n-k} \times t\) such that \(h(\sigma) \cap (B \times t)\) is 0-dimensional and \(h\) is close to the inclusion of \(\sigma\) into \(E^{n-k} \times t\). Let \(A = h(\sigma) \cap (B \times I^k)\). \(A\) is a 0-dimensional subset of \(B \times t\). Let \(P\) be a \(k\)-dimensional polyhedron topologically embedded into \(B \times I^k\). Let \(T \subseteq P\) be defined as follows: \(x \in T\) if there is a neighborhood \(U\) of \(x\) in \(P\) and a point \(y \in E^{n-k}\) such that \(U \subseteq y \times I^k\). Then \(T\) is open in \(P\) and \(P\) is locally tame at each point of \(U\) \([5]\). We shall construct a map \(f: B \times E^k \rightarrow B \times E^k\) such that \(p_1 \cdot f = p_1\) where \(p_1\) = projection: \(B \times E^k \rightarrow B\), \(f(A) \cap P \subseteq T\), and \(d(f, \text{Id}|B \times E^k)\) is small. For each \((x, t) \in A \cap (P - T)\), let \(\varepsilon_x > 0\) be chosen so that for some \(t_x \in E^k\) with \(d(t_x, t) < \varepsilon_x\) and for all \(x' \in B\) with \(d(x', x) < \varepsilon_x\), \((x', t_x) \in (B \times E^k) - P\). Now for some finite number of \(x \in B\), the \(\varepsilon_x\)-neighborhoods of the \(x\)'s cover \(p_1(A \cap (P - T))\). Since \(A\) is totally disconnected it is possible to cover \(p_1(A \cap (P - T))\) by closed sets \(B_1, \ldots, B_k\) that are pairwise disjoint and, for each \(i = 1, \ldots, k\), there is an \(x_i\) such that \(B_i\) lies in the \(\varepsilon_{x_i}\)-neighborhood of \(x_i\). Define \(f(x, y) = (x, y + t_{x_i} - t)\) for \(x \in B_i\). Then extend \(p_2: \bigcup B_i \times E^n \rightarrow E^n\) to a map \(f_2: B \times E^k \rightarrow E^k\) such that \(d(f_2, p_2) < \varepsilon\). Then extend \(f\) to \(B \times E^k\) by setting \(f = \text{Id} \times f_2: B \times E^k \rightarrow B \times E^k\). Then \(f(A) \cap P \subseteq T\). Now \(f\) can be extended to an \(\varepsilon\)-map of \(E^n\) such that
$p_1 \cdot f = p_1 : E^n \to E^{n-k}$. Thus $f \cdot h(\sigma) \cap P \subset T$. Since P is locally tame at each point of T there is an approximation g of $f \cdot h$ such that $g(\sigma) \cap P = \emptyset$. Thus $E^n - P$ is 1-ULC and P is tame in E^n.

Corollary 5.1. Let $C \subseteq E^n$ be an m-cell that factors 1-time. Let P be a k-dimensional polyhedron topologically embedded in C, $k < m \leq n - 2$, and $n \geq 5$. Then for each $\varepsilon > 0$ there is an ε-push H of (C, P) such that $H(P)$ is tame in E^n.

Proof. This is actually a corollary to the proofs of Theorem 3 and Theorem 5. Let K be a triangulation of E^n and suppose $C = B \times I \subseteq E^{n-1} \times E^1$. Then there is an approximation j of the inclusion map $i : [K^2] \to E^n$ such that $j([K^2]) \cap C$ is a 0-dimensional subset of $B \times \{t_1, \ldots, t_p\}$ for some numbers $t_1, \ldots, t_p \in I$. Thus for any k-dimensional polyhedron $P \subseteq C$, there is a small homeomorphism h of C such that $h(P) \cap j([K^2]) = \emptyset$. Thus we can obtain by a sequence of such steps a small homeomorphism H of C such that $E^n - H(P)$ is 1-ULC. Thus $H(P)$ is tame.

Remarks. Do Theorem 3 and Theorem 5 remain true if the hypothesis $n \geq 5$ is replaced by $n = 4$? Does Theorem 5 remain true if the hypothesis $m \leq n - 2$ is replaced by $m = n - 1$? More specifically take Bing’s 2-sphere $S \subseteq E^4$ tame?

Theorem 5 is sharp in the sense that there are examples of cells that factor k-times and for which some $(k+1)$-dimensional subcell is wild.

Davidson has independently proved Theorem 3 for the case $m = 2$.

References

Michigan State University, East Lansing, Michigan 48823

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use