TAME ARCS ON WILD CELLS

CHARLES L. SEEBECK III

Abstract. We prove here that, for $n \geq 5$, every cell in E^n contains a tame arc and that, for product cells $B^{n-k} \times I^k \subset E^{n-k} \times E^k = E^n$, every k-dimensional polyhedron $P \subset B^{n-k} \times I^k$ is tame in E^n.

1. Introduction. Bing showed in [1] that every 2-cell in 3-dimensional Euclidean space contains a tame arc and in [2] that there is a 2-sphere that is wild but for which all subarcs are tame. We obtain here analogous results in higher dimensions (≥ 5). First we show that for $n \geq 5$, any subarc of any k-cell in E^n can be approximated by subarcs tame in E^n. Then we show that if C is any $(m-k)$-cell in E^{n-k}, $I^k \subset E^k$ is the k-fold product of the unit interval $I, m \leq n - 2$, and $n \geq 5$, then every sub k-cell of $C \times I^k \subset E^{n-k} \times E^k$ is tame in E^n. Since there are cells in this class of factored cells that are wild at every point [10] we have a generalization of Bing's example [2] to higher dimensions.

2. The approximation theorems. First we give a few definitions. Let $X \subset M$ be closed subsets of E^n. Let d denote the usual metric on E^n. A homeomorphism h of M is an ϵ-push of (M, X) if there is an isotopy h_t of M such that $h_0 = \text{Identity}$, $h_t = h$, $d(h_t(x), x) < \epsilon$ for each $t \in I$ and each $x \in M$, and h_t is the identity outside the ϵ-neighborhood of X in M for each t. If P is a polyhedron and $h : P \rightarrow E^n$ is an embedding we say that h is tame if there is a homeomorphism H of E^n such that $H \cdot h$ is piecewise linear (PL).

Lemma 1. Suppose X is a compact subset of E^n, $\text{Int } X = \emptyset$, X does not locally separate E^n, G is a compact 1-dimensional subpolyhedron of E^n, $n \geq 4$, and $\epsilon > 0$. Then there is an ϵ-push h of $(E^n, G \cap X)$ such that $h(G) \cap X = \emptyset$.

Proof. The proof is an immediate consequence of general position and Corollary 5.6 of [3].

Lemma 2. Suppose X is a compact subset of E^n, $\text{Int } X = \emptyset$, X does not locally separate E^n, P is a 2-dimensional subpolyhedron of E^n, $n \geq 4$,
and \(\epsilon > 0 \). Then there is an \(\epsilon \)-push \(h \) of \((E^n, P \cap X)\) such that \(h(P) \cap X \) is totally disconnected.

Proof. Let \(K \) be a triangulation of \(P \) and \(\{ K_i | i = 1, 2, \ldots \} \) the sequence of \(i \)th derived barycentric subdivisions of \(K \). We shall use Lemma 1 to construct an \(\epsilon \)-push \(h \) of \((E^n, P \cap X)\) such that \(h(U \cap h_i) \cap X = \emptyset \). Clearly \(h \) then satisfies the conclusion of Lemma 2.

Let \(\epsilon_1 = \epsilon / 2 \) and apply Lemma 1 with \((X, G, \epsilon)\) replaced by \((X, |K_1|, \epsilon_1)\), obtaining an \(\epsilon_1 \)-push \(h_1 \) of \((E^n, |K_1| \cap X)\) such that \(h_1(|K_1|) \cap X = \emptyset \). Let \(\delta_1 = d(h_1(|K_1|)), X) \) and \(\eta_1 \) be some positive number chosen depending on \(h_1 \). (See [8] or Theorem 3.4 of [7].) Set \(\epsilon_2 = \min \{ \epsilon_1 / 2, \delta_1 / 2, \eta_1 \} \). As before we obtain an \(\epsilon_2 \)-push \(h_2 \) of \((E^n, h_1(|K_2|) \cap X)\) such that \(h_2 \cdot h_1(|K_2|) \cap X = \emptyset \). Set \(h = h_2 \cdot h_1 \). Continuing in this way we obtain a sequence \(\{ h_i \} \) of homeomorphisms of \(E^n \). Since \(\epsilon_{i+1} < \epsilon_i / 2 \), \(\lim_{n \to \infty} h = h \) is an \(\epsilon \)-map of \(E^n \) supported on a compact set. Because \(\epsilon_{i+1} \leq \delta_i / 2 \), \(h_i(U \cap |K_i|) \cap X = \emptyset \) and because the \(\eta_i \) are chosen sufficiently small depending on the \(h_i \), \(h \) is a homeomorphism. Thus \(h \) is the required \(\epsilon \)-push of \((E^n, X)\).

Theorem 3. Let \(M \) be a PL \(m \)-manifold topologically embedded in \(E^n \), \(G \) a 1-dimensional subpolyhedron of \(M \), \(G' \) a subpolyhedron of \(G \) that is tame in \(E^n \), \(n \geq 5 \), and \(m \geq 2 \). Then for each \(\epsilon > 0 \) there is an \(\epsilon \)-embedding \(\alpha : G \to M \) such that \(\alpha \) is tame in \(E^n \) and \(\alpha|G' = \text{inclusion}: G' \to E^n \).

Proof. It is sufficient to consider the case that \(M \) is a 2-cell, \(G \) is an arc, and \(G' = \text{end points of } G \). Using Lemma 2 we shall construct an embedding \(\alpha : G \to M \) fixed on \(G' \) such that \(E^n - \alpha(G) \) is uniformly locally 1-connected (1-ULC). By Theorem 4.2 of [4], \(\alpha \) is thus tame.

Let \(K \) be a triangulation of \(E^n \) and \(K_1, K_2, \ldots \) the sequence of \(i \)th derived barycentric subdivisions of \(K \). It follows from general position and Lemma 2 that there is an \(\epsilon / 2 \)-push \(h_1 \) of \((E^n, G \cap |K_1|)\) such that \(h_1(|K_1|) \cap M \) is totally disconnected and \(h_1(|K_1|) \cap G' = \emptyset \). Thus there is an \(\epsilon / 2 \)-embedding \(\alpha_1 : G \to M \) fixed on \(G' \) such that \(\alpha_1(G) \cap h_1(|K_1|) = \emptyset \). Now as in the proof of Lemma 2 we set \(\epsilon_1 = \epsilon / 2 \), \(\delta_1 = d(\alpha_1(G), h_1(|K_1|)), \eta_1 > 0 \) chosen depending on \(\alpha_1 \), \(\eta_1' > 0 \) chosen depending on \(h_1 \), \(\epsilon_2 = \min \{ \epsilon_1 / 2, \delta_1 / 4, \eta_1 \} \), and \(\epsilon_2' = \min \{ \epsilon_2 / 2, \delta_1 / 4, \eta_1' \} \). Then using Lemma 2 we find an \(\epsilon_2' \)-push \(h_2 \) of \((E^n, h_1(|K_2|)) \cap M \) such that \(h_2 \cdot h_1(|K_2|) \cap M \) is totally disconnected. Let \(h_2 = h_2 \cdot h_1 \). We can again find an embedding \(\alpha_2 : G \to M \) such that \(d(\alpha_2, \alpha_1(G) \cap h_2(|K_2|)) = \emptyset \), and \(\alpha_2 \) is fixed on \(G' \). Continuing in this way we construct a sequence \(\{ h_i \} \) of homeomorphisms of \(E^n \). Because \(\epsilon_{i+1} \leq \epsilon_i / 2 \), the \(\alpha_i \) converge to an \(\epsilon \)-map \(\alpha : G \to M \). The \(\eta_i \) can be picked so as to guarantee that \(\alpha \) is an
e-embedding. Similarly the \(h_i \) converge to an \(\epsilon \)-push of \((E^n, M)\). Because \(\max \{ \epsilon_{i+1}, \epsilon_{i+1} \} \leq \delta_i/2^{i+1}, \alpha(G) \cap h(U^n_{i+1} | K^n_i) = \emptyset \). Thus \(h^{-1} \cdot \alpha(G) \cap U^n_{i+1} | K^n_i = \emptyset \), and so \(E^n - h^{-1} \cdot \alpha(G) \) is 1-ULC. Therefore \(h^{-1} \cdot \alpha \) and hence \(\alpha \) is tame.

Corollary 3.1. Suppose \(N \) is a PL \(n \)-manifold, \(M \) is a PL \(m \)-manifold topologically embedded in \(N \), \(G \) is a 1-dimensional polyhedron, \(G' \subseteq G \) is a subpolyhedron, \(\beta: G \to M \) is an embedding such that \(\beta | G' : G' \to N \) is tame, \(n \geq 5 \), and \(m \geq 2 \). Then for each \(\epsilon > 0 \) there is an embedding \(\alpha: G \to M \) such that \(d(\alpha, \beta) < \epsilon \), \(\alpha | G' = \beta | G' \), and \(\alpha: G \to N \) is tame.

Proof. First take an infinite triangulation of \(G - G' \) and approximate \(\beta \) by an embedding \(\beta': G \to M \) such that \(\beta' | G' = \beta | G' \) and \(\beta' \) is locally PL on \(G - G' \). Then apply Theorem 3 to a sequence of compact subpolyhedra of \(\beta'(G - G') \). Thus we obtain an embedding \(\alpha: G \to M \) such that \(\alpha | G' = \beta | G' \) and \(\alpha | G - G' \) is locally tame in \(E^n \). Thus \(\alpha: G \to N \) is tame (Theorem 4.2 of [4]).

Theorem 4. Suppose \(N \) is a PL \(n \)-manifold, \(M \) is a PL \(m \)-manifold topologically embedded in \(N \), every 2-complex of \(M \) can be approximated by a 2-complex in \(M \) that is tame in \(N \), and \(5 \leq m \leq n - 2 \). Then each \(k \)-dimensional polyhedron \(P \) topologically embedded in \(M \), \(k < m \), can be approximated in \(M \) by embeddings that are tame in \(N \).

Proof. It follows from [5] and either [6] or [9] that an approximation of \(P \) is tame if its complement is 1-ULC. Such an approximation is found by modifying the proof of Theorem 3. Let \(L \) be a triangulation of \(M \) and \(L_1, L_2, \ldots \) the sequence of barycentric subdivisions. Similarly let \(K_1, K_2, \ldots \) be the sequence of barycentric subdivisions of a triangulation of \(N \). Using techniques similar to those above it is possible to construct a homeomorphism \(h \) of \(N \) such that \(h(U | K^n_i) \cap M = \emptyset \) and \(h(U | K^n_i) \cap (\cup Q) = \emptyset \) where \(Q \) is a close approximation of \(| L^n_i | \) for each \(i \) that is tame in \(N \). Now for each \(i \) we can find an arc \(A_i \subseteq M \) such that \(C_i = h(| K^n_i |) \cap M \subseteq A_i \) and \(A_i - C_i \) is locally tame in \(M \). Since \(M - C_i \) is 1-ULC, \(M - A_i \) is 1-ULC and hence \(A_i \) is tame. Using \(A_i \), we can construct, for each \(i \), a homeomorphism \(f_i \) of \(M \) moving points a distance depending on \(f_{i-1} \) so that \(f_i(P) \cap C_i = \emptyset \). Thus as in the proof of Lemma 2 and Theorem 3 we can construct an \(\epsilon \)-push \(f \) of \((M, P) \) such that \(f(P) \cap (\cup C_i) = \emptyset \). Thus \(N - f(P) \) is 1-ULC and the required approximation has been found.

It is evident that we have actually proved the following.

Addendum to Theorem 4. Under the hypotheses of Theorem 4 it is possible to find for each \(\epsilon > 0 \) an \(\epsilon \)-push \(f \) of \((M, P) \) such that \(f(P) : P \to N \) is tame.
3. Subpolyhedra of factored cells. We say that an m-cell $C \subset E^n$ factors k-times if for some homeomorphism $h : E^n \to E^n$ and some $(m-k)$-cell $B \subset E^{n-k}$, $h(C) = B \times I^k \subset E^{n-k} \times E^k$ where I^k is the k-fold product of the interval I naturally embedded in E^k and $B \times I^k \subset E^{n-k} \times E^k$ is the product embedding.

Theorem 5. Suppose C is an m-cell topologically embedded in E^n, C factors k-times, $n \geq 5$, and $m \leq n - 2$. Then every embedding of any compact k-dimensional polyhedron into C is tame in E^n.

Proof. Let B be an $(m-k)$-cell in E^{n-k}, P a finite k-dimensional polyhedron topologically embedded in $B \times I^k \subset E^{n-k} \times E^k$, $n \geq 5$, and $1 \leq k < m \leq n - 2$. It follows from [5] and either [6] or [9] that P is tame in E^n if $E^n - P$ is 1-ULC. However, $E^n - P$ is 1-ULC if each 2-complex in E^n can be homotopied off P by arbitrarily small homotopies. Let K be a finite 2-complex. First find a very small homotopy of $|K|$ such that for some subdivision K' each 2-cell of K' either projects onto a 0- or 1-simplex of E^{n-k} or else lies in $E^{n-k} \times t$ for some $t \in E^k$. Since $n - k \geq (m-k)+2$ $E^{n-k} - B$ is locally 0-connected. Thus it follows that any 0- or 1-simplex in E^{n-k} can be homotopied off B by a small homotopy. Thus any 2-cell of K' that projects onto a 0- or 1-cell of E^{n-k} can be homotopied off $B \times I^k$. Let σ be a 2-cell of K', $t \in E^k$, and $\sigma \subset E^{n-k} \times t$. For $n - k \geq 4$ it follows from Lemma 2 that there is an ε-push h of $(E^{n-k} \times t, \sigma)$ such that $h(\sigma) \cap (B \times t)$ is 0-dimensional. For $n - k = 3$ we can use the techniques of the proof of Lemma 2 to find an embedding $h : \sigma \to E^{n-k} \times t$ such that $h(\sigma) \cap (B \times t)$ is 0-dimensional and h is close to the inclusion of σ into $E^{n-k} \times t$. Let $A = h(\sigma) \cap (B \times I^k)$. A is a 0-dimensional subset of $B \times t$. Let P be a k-dimensional polyhedron topologically embedded into $B \times I^k$. Let $T \subset P$ be defined as follows: $x \in T$ if there is a neighborhood U of x in P and a point $y \in E^{n-k}$ such that $U \subset y \times I^k$. Then T is open in P and P is locally tame at each point of U [5]. We shall construct a map $f : B \times E^k \to B \times E^k$ such that $p_1 \circ f = p_1$ where p_1 = projection: $B \times E^k \to B$, $f(A) \cap P \subset T$, and $d(f, \text{Id} \mid B \times E^k)$ is small. For each $(x, t) \in A \cap (P - T)$, let $\varepsilon_x > 0$ be chosen so that for some $t_x \in E^k$ with $d(t_x, t) < \varepsilon_x$ and for all $x' \in B$ with $d(x', x) < \varepsilon_x$, $(x', t_x) \in (B \times E^k) - P$. Now for some finite number of $x \in B$, the ε_x-neighborhoods of the x's cover $p_1(A \cap (P - T))$. Since A is totally disconnected it is possible to cover $p_1(A \cap (P - T))$ by closed sets B_1, \ldots, B_k that are pairwise disjoint and, for each $i = 1, \ldots, k$, there is an x_i such that B_i lies in the ε_{x_i}-neighborhood of x_i. Define $f(x, y) = (x, y + t_{x_i} - t)$ for $x \in B_i$. Then extend $p_2 \circ f : UB_i \times E^k \to E^k$ to a map $f_2 : B \times E^k \to E^k$ such that $d(f_2, p_2) < \varepsilon$. Then extend f to $B \times E^k$ by setting $f = \text{Id} \times f_2 : B \times E^k \to B \times E^k$. Then $f(A) \cap P \subset T$. Now f can be extended to an ε-map of E^n such that
$p_1 \cdot f = p_1 : E^n \to E^{n-k}$. Thus $f \cdot h(\sigma) \cap P \subseteq T$. Since P is locally tame at each point of T there is an approximation g of $f \cdot h$ such that $g(\sigma) \cap P = \emptyset$. Thus $E^n - P$ is 1-ULC and P is tame in E^n.

Corollary 5.1. Let $C \subseteq E^n$ be an m-cell that factors 1-time. Let P be a k-dimensional polyhedron topologically embedded in C, $k \leq m \leq n-2$, and $n \geq 5$. Then for each $\epsilon > 0$ there is an ϵ-push H of (C, P) such that $H(P)$ is tame in C.

Proof. This is actually a corollary to the proofs of Theorem 3 and Theorem 5. Let K be a triangulation of E^n and suppose $C = B \times I \subseteq E^{n-1} \times E^1$. Then there is an approximation j of the inclusion map $i : K^2 \to E^n$ such that $j(\{ K^2 \}) \cap C$ is a 0-dimensional subset of $B \times \{ t_1, \ldots, t_p \}$ for some numbers $t_1, \ldots, t_p \in I$. Thus for any k-dimensional polyhedron $P \subseteq C$, there is a small homeomorphism h of C such that $h(P) \cap j(\{ K^2 \}) = \emptyset$. Thus we can obtain by a sequence of such steps a small homeomorphism H of C such that $E^n - H(P)$ is 1-ULC. Thus $H(P)$ is tame.

Remarks. Do Theorem 3 and Theorem 5 remain true if the hypothesis $n \geq 5$ is replaced by $n = 4$? Does Theorem 5 remain true if the hypothesis $m \leq n-2$ is replaced by $m = n-1$? More specifically take Bing’s 2-sphere $S \subseteq E^3$ [2]. Are all subarcs of $S \times I \subseteq E^4$ tame?

Theorem 5 is sharp in the sense that there are examples of cells that factor k-times and for which some $(k+1)$-dimensional subcell is wild.

Daverman has independently proved Theorem 3 for the case $m = 2$.

References

Michigan State University, East Lansing, Michigan 48823