Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Proper mappings and dimension


Author: James Keesling
Journal: Proc. Amer. Math. Soc. 29 (1971), 202-204
MSC: Primary 54.70
DOI: https://doi.org/10.1090/S0002-9939-1971-0286085-6
MathSciNet review: 0286085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note it is shown that if W is the long line and f is a proper mapping of $ W \times [0,1]$ into Y, then $ \dim Y \geqq 2$. This answers a question raised by Isbell.


References [Enhancements On Off] (What's this?)

  • [1] W. Hurewicz and H. Wallman, Dimension theory, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N.J., 1941. MR 3, 312. MR 0006493 (3:312b)
  • [2] J. Isbell, Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964. MR 30 #561. MR 0170323 (30:561)
  • [3] K. Kuratowski, Topologie. Vol. 2, Monografie Math., Tom 21, PWN, Warsaw, 1961; English transl., Academic Press, New York; PWN, Warsaw, 1968. MR 24 #A2958. MR 0259835 (41:4467)
  • [4] A. Lelek, Some problems in metric topology, Mimeographed Lecture Notes, Louisiana State University, Baton Rouge, La., 1965/66.
  • [5] J. Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380.
  • [6] A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690-700. MR 19, 299. MR 0087078 (19:299b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.70

Retrieve articles in all journals with MSC: 54.70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0286085-6
Keywords: Dimension, proper mapping, locally compact space
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society