Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Idempotent measures on locally compact semigroups


Authors: A. Mukherjea and N. A. Tserpes
Journal: Proc. Amer. Math. Soc. 29 (1971), 143-150
MSC: Primary 22A20; Secondary 46G99
DOI: https://doi.org/10.1090/S0002-9939-1971-0296207-9
MathSciNet review: 0296207
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A conjecture that the support of an $ {r^ \ast }$-invariant regular finite measure on a locally compact semigroup is a left group is proven. Moreover we also prove that the support of an idempotent measure on a locally compact semigroup is completely simple, thus extending a well-known result of Pym and Heble-Rosenblatt on compact semigroups to the locally compact case. These results are also shown to be true in a complete metric semigroup.


References [Enhancements On Off] (What's this?)

  • [1] L. N. Argabright, A note on invariant integrals on locally compact semigroups, Proc. Amer. Math. Soc. 17 (1966), 377-382. MR 32 #5780. MR 0188341 (32:5780)
  • [2] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Math., no. 42, Springer-Verlag, Berlin and New York, 1967. MR 36 #6531. MR 0223483 (36:6531)
  • [3] M. Heble and M. Rosenblatt, Idempotent measures on a compact topological semigroup, Proc. Amer. Math. Soc. 14 (1963), 177-184. MR 30 #214. MR 0169971 (30:214)
  • [4] A. Mukherjea, Idempotent probabilities on semigroups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 142-146. MR 39 #3540. MR 0242207 (39:3540)
  • [5] J. S. Pym, Idempotent measures on semigroups, Pacific J. Math. 12 (1962), 685-698. MR 26 #6298. MR 0148793 (26:6298)
  • [6] T. C. Sun and N. A. Tserpes, Idempotent measures on locally compact semigroups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 273-278. MR 0272935 (42:7816)
  • [7] A. Tortrat, Lois tendues $ \mu $ sur un demi-groupe topologique completement simple X, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 145-160. MR 35 #1063. MR 0210169 (35:1063)
  • [8] N. A. Tserpes and A. Kartsatos, Mesures semi-invariantes sur un semi-groupe localement compact, C.R. Acad. Sci. Paris Sér. A-B 267 (1968), A507-A509. MR 38 #6032. MR 0237751 (38:6032)
  • [9] N. A. Tserpes and A. Mukherjea, Some problems on idempotent measures on semigroups, Bull. Austral. Math Soc. 2 (1970), 299-315. MR 0262845 (41:7450)
  • [10] A. D. Wallace, The Rees-Suschkewitsch structure theorem for compact simple semigroups, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 430-432. MR 18, 14. MR 0079009 (18:14e)
  • [11] J. H. Williamson, Harmonic analysis on semigroups, J. London Math. Soc. 42 (1967), 1-41. MR 34 #8101. MR 0208291 (34:8101)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A20, 46G99

Retrieve articles in all journals with MSC: 22A20, 46G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1971-0296207-9
Keywords: Locally compact topological semigroup, regular Borel measure, idempotent measure, completely simple semigroup, right invariant measure
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society